Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
zed1
Xem chi tiết
Duy Nam
7 tháng 3 2022 lúc 7:17

a, xét tam giác ABE và tam giác HBE có : BE chung

góc BAE = góc BHE = 90 do ...

góc ABE = góc HBE do BE là phân giác ...

=> tam giác ABE = tam giác HBE (ch - gn)

=> AE = EH

b, xét 2 tam giác vuông EAK và EHC có:

         EA=EH(theo câu a)

         ˆAEKAEK^=ˆHECHEC^(vì đối đỉnh)

=> t.giác EAK=t.giác EHC(cạnh góc vuông-góc nhọn)

=> EK=EC(2 cạnh tương ứng)

c, ta thấy E là trực tâm của tam giác CKB

=> BE⊥⊥CK

 

phốt đuỹ bẹn tên Công Mi...
7 tháng 3 2022 lúc 7:19

tham khảo

a, xét tam giác ABE và tam giác HBE có : BE chung

góc BAE = góc BHE = 90 do ...

góc ABE = góc HBE do BE là phân giác ...

=> tam giác ABE = tam giác HBE (ch - gn)

=> AE = EH

b, xét 2 tam giác vuông EAK và EHC có:

         EA=EH(theo câu a)

         ˆAEKAEK^=ˆHECHEC^(vì đối đỉnh)

=> t.giác EAK=t.giác EHC(cạnh góc vuông-góc nhọn)

=> EK=EC(2 cạnh tương ứng)

c, ta thấy E là trực tâm của tam giác CKB

=> BECK

vy nguyen
5 tháng 5 2022 lúc 21:32

a)xét △ABE và △HBE có:

BE : cạnh chung

góc ABE =góc HBE ( vì BE là đường phân giác )

góc BAE= góc BHE= 900

Do đó △ABE=△HBE( cạnh huyền-góc nhọn)

⇒EA=EH( 2 Cạnh tương ứng)

b)xét

a)xét △ABE và △HBE có:

BE : cạnh chung

góc ABE =góc HBE ( vì BE là đường phân giác )

góc BAE= góc BHE= 900

Do đó △ABE=△HBE( cạnh huyền-góc nhọn)

⇒EA=EH( 2 Cạnh tương ứng)

a)xét △ABE và △HBE có:

BE : cạnh chung

góc ABE =góc HBE ( vì BE là đường phân giác )

góc BAE= góc BHE= 900

Do đó △ABE=△HBE( cạnh huyền-góc nhọn)

⇒EA=EH( 2 Cạnh tương ứng)

b) xét △AEK và △HEC có:

góc AEK= góc HEK ( đối đỉnh)

góc A=H=900

EA=EH(cmt)

do đó △AEK=△HEC( cạnh góc vuông-góc nhọn kề)

⇒EK=EC( 2 CẠNH tương ứng)

c)gọi I ∈ KC

△EKC có:

EK=EC(cmt) nên △EKC cân tại E 

mik ko bt làm tiếp nữabucminh

Bảo Trân Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 6 2023 lúc 8:37

a: Xét ΔBAE vuông tại A và ΔBHE vuông tại H có

BE chung

góc ABE=góc HBE

=>ΔBAE=ΔBHE

=>EA=EH

b: Xét ΔEAK vuông tại A và ΔEHC vuông tại H có

EA=EH

góc AEK=góc HEC

=>ΔEAK=ΔEHC

=>EK=EC

c: BK=BC

EK=EC

=>BE là trung trực của CK

=>BE vuông góc CK

Nguyễn Thị Hoàng Dung
Xem chi tiết
Trương Công Phước
Xem chi tiết
Đặng Tấn Phát
28 tháng 10 2023 lúc 19:14

1. ΔABE = ΔHBE

Xét ΔABE và ΔHBE, ta có :

\widehat{BAE} =\widehat{BHE} =90^0 (gt)

\widehat{B_1} =\widehat{B_2}( BE là đường phân giác của góc HBA).

BE là cạnh chung.

=> ΔABE = ΔHBE

2. BE là đường trung trực của AH :

BA =BH và EA = EH (ΔABE = ΔHBE)

=> BE là đường trung trực của AH .

3. EK = EC

Xét ΔKAE và ΔCHE, ta có :

\widehat{KAE} =\widehat{CHE} =90^0 (gt)

EA = EH (cmt)

\widehat{E_1} =\widehat{E_2}( đối đỉnh).

=> ΔKAE và ΔCHE

=> EK = EC

4. EC > AC

Xét ΔKAE vuông tại A, ta có :

KE > AE (KE là cạnh huyền)

Mà : EK = EC (cmt)

=> EC > AC.

trần hoàng anh
Xem chi tiết
ngọc_nè
Xem chi tiết
Mike
5 tháng 5 2019 lúc 17:28

a, xét tam giác ABE và tam giác HBE có : BE chung

góc BAE = góc BHE = 90 do ...

góc ABE = góc HBE do BE là phân giác ...

=> tam giác ABE = tam giác HBE (ch - gn)

=> AE = EH

Đỗ Thị Dung
5 tháng 5 2019 lúc 18:02

b, xét 2 tam giác vuông EAK và EHC có:

         EA=EH(theo câu a)

         \(\widehat{AEK}\)=\(\widehat{HEC}\)(vì đối đỉnh)

=> t.giác EAK=t.giác EHC(cạnh góc vuông-góc nhọn)

=> EK=EC(2 cạnh tương ứng)

c, ta thấy E là trực tâm của tam giác CKB

=> BE\(\perp\)CK


A B C E H K

khánh of the thối
28 tháng 6 2020 lúc 10:29

ko biêt

Khách vãng lai đã xóa
Phùng Phúc An
Xem chi tiết

A C B D E H K I 2 1

a, Ta có : \(\Delta\)ABC cân tại A (gt)

\(\Rightarrow\)Góc B = góc \(C_1\)

Mà góc \(C_1=C_2\)(đối đỉnh)

\(\Rightarrow\)Góc B = góc \(C_2\)

Xét \(\Delta BDH\)\(\perp H\)(DH\(\perp\)BC) và \(\Delta CEK\perp K\)(EK \(\perp\)BC) có :

BD=CE (gt)

Góc B = góc C\(_2\)(cmt)

\(\Rightarrow\Delta BDH=\Delta CEK\)(ch-gn)

\(\Rightarrow DH=EK\)( 2 cạnh tg ứng)

Vậy...

b, Ta có : DH và EK cùng vuông góc vs BC (gt)

\(\Rightarrow\)DH \(//\)EK (Quan hệ từ vuông góc đến song song)

\(\Rightarrow\)Góc HDI = góc IEC ( 2 góc so le trong )

Xét \(\Delta HDI\perp H\left(DH\perp BC\right)\)và \(\Delta KEI\perp K\left(EK\perp BC\right)\)có :

DH=CE (\(\Delta BEH=\Delta CEK\))

Góc HDI = góc IEC (cmt)

\(\Rightarrow\)\(\Delta HDI=\Delta KEI\)(cgv-gnk)

\(\Rightarrow DI=EI\)( 2 cạnh tg ứng )

Mà D,I,E thẳng hàng ( DE và BC cắt nhau tại I )

\(\Rightarrow\)I là trung điểm của BC

Vậy...

Chúc bn hok tốt

Khách vãng lai đã xóa
Nguyễn Ngọc Gia Bảo
Xem chi tiết
Nguyễn Ngọc Gia Bảo
27 tháng 3 2020 lúc 20:38

nhanh lên

Khách vãng lai đã xóa
Quốc Hưng
Xem chi tiết
Nhók Bướq Bỉnh
29 tháng 7 2016 lúc 20:54

1. ΔABE = ΔHBE

Xét ΔABE và ΔHBE, ta có :

\widehat{BAE} =\widehat{BHE} =90^0 (gt)

\widehat{B_1} =\widehat{B_2}( BE là đường phân giác BE).

BE là cạnh chung.

=> ΔABE = ΔHBE

2. BE là đường trung trực của AH :

BA =BH và EA = EH (ΔABE = ΔHBE)

=> BE là đường trung trực của AH .

3. EK = EC

Xét ΔKAE và ΔCHE, ta có :

\widehat{KAE} =\widehat{CHE} =90^0 (gt)

EA = EH (cmt)

\widehat{E_1} =\widehat{E_2}( đối đỉnh).

=> ΔKAE và ΔCHE

=> EK = EC

4. EC > AC

Xét ΔKAE vuông tại A, ta có :

KE > AE (KE là cạnh huyền)

Mà : EK = EC (cmt)

=> EC > AC.

phát
3 tháng 8 2022 lúc 12:41

Xét ΔABE và ΔHBE, ta có :

\widehat{BAE} =\widehat{BHE} =90^0 (gt)

\widehat{B_1} =\widehat{B_2}( BE là đường phân giác BE).

BE là cạnh chung.

=> ΔABE = ΔHBE

2. BE là đường trung trực của AH :

BA =BH và EA = EH (ΔABE = ΔHBE)

=> BE là đường trung trực của AH .

3. EK = EC

Xét ΔKAE và ΔCHE, ta có :

\widehat{KAE} =\widehat{CHE} =90^0 (gt)

EA = EH (cmt)

\widehat{E_1} =\widehat{E_2}( đối đỉnh).

=> ΔKAE và ΔCHE

=> EK = EC

4. EC > AC

Xét ΔKAE vuông tại A, ta có :

KE > AE (KE là cạnh huyền)

Mà : EK = EC (cmt)

=> EC > AC.