Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
zed1

: Cho tam giác ABC vuông tại A. Đường phân giác BE; kẻ EH vuông góc với BC ( H thuộc BC ). Gọi K là giao điểm của AB và HE. Chứng minh:

 

a/ EA = EH

 

b/ EK = EC

 

c/ BE vuông góc KC

Duy Nam
7 tháng 3 2022 lúc 7:17

a, xét tam giác ABE và tam giác HBE có : BE chung

góc BAE = góc BHE = 90 do ...

góc ABE = góc HBE do BE là phân giác ...

=> tam giác ABE = tam giác HBE (ch - gn)

=> AE = EH

b, xét 2 tam giác vuông EAK và EHC có:

         EA=EH(theo câu a)

         ˆAEKAEK^=ˆHECHEC^(vì đối đỉnh)

=> t.giác EAK=t.giác EHC(cạnh góc vuông-góc nhọn)

=> EK=EC(2 cạnh tương ứng)

c, ta thấy E là trực tâm của tam giác CKB

=> BE⊥⊥CK

 

phốt đuỹ bẹn tên Công Mi...
7 tháng 3 2022 lúc 7:19

tham khảo

a, xét tam giác ABE và tam giác HBE có : BE chung

góc BAE = góc BHE = 90 do ...

góc ABE = góc HBE do BE là phân giác ...

=> tam giác ABE = tam giác HBE (ch - gn)

=> AE = EH

b, xét 2 tam giác vuông EAK và EHC có:

         EA=EH(theo câu a)

         ˆAEKAEK^=ˆHECHEC^(vì đối đỉnh)

=> t.giác EAK=t.giác EHC(cạnh góc vuông-góc nhọn)

=> EK=EC(2 cạnh tương ứng)

c, ta thấy E là trực tâm của tam giác CKB

=> BECK

vy nguyen
5 tháng 5 2022 lúc 21:32

a)xét △ABE và △HBE có:

BE : cạnh chung

góc ABE =góc HBE ( vì BE là đường phân giác )

góc BAE= góc BHE= 900

Do đó △ABE=△HBE( cạnh huyền-góc nhọn)

⇒EA=EH( 2 Cạnh tương ứng)

b)xét

a)xét △ABE và △HBE có:

BE : cạnh chung

góc ABE =góc HBE ( vì BE là đường phân giác )

góc BAE= góc BHE= 900

Do đó △ABE=△HBE( cạnh huyền-góc nhọn)

⇒EA=EH( 2 Cạnh tương ứng)

a)xét △ABE và △HBE có:

BE : cạnh chung

góc ABE =góc HBE ( vì BE là đường phân giác )

góc BAE= góc BHE= 900

Do đó △ABE=△HBE( cạnh huyền-góc nhọn)

⇒EA=EH( 2 Cạnh tương ứng)

b) xét △AEK và △HEC có:

góc AEK= góc HEK ( đối đỉnh)

góc A=H=900

EA=EH(cmt)

do đó △AEK=△HEC( cạnh góc vuông-góc nhọn kề)

⇒EK=EC( 2 CẠNH tương ứng)

c)gọi I ∈ KC

△EKC có:

EK=EC(cmt) nên △EKC cân tại E 

mik ko bt làm tiếp nữabucminh


Các câu hỏi tương tự
Bảo Trân Nguyễn
Xem chi tiết
ngọc_nè
Xem chi tiết
Lê Thục Quyên
Xem chi tiết
Trần Mạnh Quân
Xem chi tiết
Lộc Trần Duy
Xem chi tiết
Trương Công Phước
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Dang Khanh Ngoc
Xem chi tiết
Dang Khanh Ngoc
Xem chi tiết