a, xét tam giác ABE và tam giác HBE có : BE chung
góc BAE = góc BHE = 90 do ...
góc ABE = góc HBE do BE là phân giác ...
=> tam giác ABE = tam giác HBE (ch - gn)
=> AE = EH
b, xét 2 tam giác vuông EAK và EHC có:
EA=EH(theo câu a)
ˆAEKAEK^=ˆHECHEC^(vì đối đỉnh)
=> t.giác EAK=t.giác EHC(cạnh góc vuông-góc nhọn)
=> EK=EC(2 cạnh tương ứng)
c, ta thấy E là trực tâm của tam giác CKB
=> BE⊥⊥CK
tham khảo
a, xét tam giác ABE và tam giác HBE có : BE chung
góc BAE = góc BHE = 90 do ...
góc ABE = góc HBE do BE là phân giác ...
=> tam giác ABE = tam giác HBE (ch - gn)
=> AE = EH
b, xét 2 tam giác vuông EAK và EHC có:
EA=EH(theo câu a)
ˆAEKAEK^=ˆHECHEC^(vì đối đỉnh)
=> t.giác EAK=t.giác EHC(cạnh góc vuông-góc nhọn)
=> EK=EC(2 cạnh tương ứng)
c, ta thấy E là trực tâm của tam giác CKB
=> BE⊥CK
a)xét △ABE và △HBE có:
BE : cạnh chung
góc ABE =góc HBE ( vì BE là đường phân giác )
góc BAE= góc BHE= 900
Do đó △ABE=△HBE( cạnh huyền-góc nhọn)
⇒EA=EH( 2 Cạnh tương ứng)
b)xét
a)xét △ABE và △HBE có:
BE : cạnh chung
góc ABE =góc HBE ( vì BE là đường phân giác )
góc BAE= góc BHE= 900
Do đó △ABE=△HBE( cạnh huyền-góc nhọn)
⇒EA=EH( 2 Cạnh tương ứng)
a)xét △ABE và △HBE có:
BE : cạnh chung
góc ABE =góc HBE ( vì BE là đường phân giác )
góc BAE= góc BHE= 900
Do đó △ABE=△HBE( cạnh huyền-góc nhọn)
⇒EA=EH( 2 Cạnh tương ứng)
b) xét △AEK và △HEC có:
góc AEK= góc HEK ( đối đỉnh)
góc A=H=900
EA=EH(cmt)
do đó △AEK=△HEC( cạnh góc vuông-góc nhọn kề)
⇒EK=EC( 2 CẠNH tương ứng)
c)gọi I ∈ KC
△EKC có:
EK=EC(cmt) nên △EKC cân tại E
mik ko bt làm tiếp nữa