Tìm các số nguyên x, y thoả mãn đẳng thức 2x2+3y2=77
Help me!!!
Tìm x,y\(\in\)Z thoả mãn đẳng thức: x2-3y2+2xy+2x-4y-7=0
x2 - 3y2 + 2xy + 2x - 4y - 7 = 0
<=> 4.(x2 - 3y2 + 2xy + 2x - 4y - 7) = 0
<=> 4x2 - 12y2 + 8xy + 8x - 16y - 28 = 0
<=> (4x2 + 8xy + 4y2) + (8x + 8y) + 4 - 16y2 - 24y - 32 = 0
<=> (2x + 2y)2 + 4(2x + 2y) + 4 - (16y2 + 24y + 9) = 23
<=> (2x + 2y + 2)2 - (4y + 3)2 = 23
<=> (2x + 6y + 5)(2x - 2y - 1) = 23
Vì \(x;y\inℤ\Rightarrow2x+6y+5;2x-2y-1\inℤ\)
Lập bảng :
2x + 6y + 5 | 1 | 23 | -1 | -23 |
2x - 2y - 1 | 23 | 1 | -23 | -1 |
x | 17/2(loại) | 3 | -9 | -7/2(loại) |
y | 2 | 2 |
Vậy (x;y) = (3;2) ; (-9;2)
Tìm tất cả các cặp số nguyên x,y thoả mãn: 2x2 + 5y2 - 4(xy+1) = 7
Sử dụng phương pháp Delta cho bài toán này:
\(2x^2+5y^2-4\left(xy+1\right)=7\)
\(\Leftrightarrow2x^2-4xy+\left(5y^2-11\right)=0\left(1\right)\)
Xét phương trình (1) là phương trình bậc 2 ẩn x có tham số là y.
Ta có: \(\Delta'=\left(\dfrac{-4y}{2}\right)^2-2\left(5y^2-11\right)=-6y^2+22\ge0\)
\(\Rightarrow-\sqrt{\dfrac{22}{6}}\le y\le\sqrt{\dfrac{22}{6}}\) hay \(-1\le y\le1\)(vì y nguyên).
Với y=-1 , ta có \(\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\) (nhận)
Với \(y=0\), ta có \(x=\pm\sqrt{\dfrac{11}{2}}\) (loại)
Với \(y=1\), ta có: \(\left[{}\begin{matrix}x=-1\\x=3\end{matrix}\right.\) (nhận)
Vậy....
Ngoài phương pháp này, ta cũng có thể sử dụng 1 phương pháp khác, đó là phương pháp kẹp:
\(2x^2+5y^2-4\left(xy+1\right)=7\)
\(\Leftrightarrow2\left(x-y\right)^2+3y^2=11\)
\(\Rightarrow3y^2\le11\Rightarrow-1\le y\le1\) (do y là số nguyên)
Đến đây ta xét các trường hợp:
Với \(y=1\), ta có \(\left[{}\begin{matrix}x=-1\\x=3\end{matrix}\right.\) (nhận)
Với \(y=-1\), ta có \(\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\) (nhận)
Với \(y=0\), ta có \(x=\pm\sqrt{\dfrac{11}{2}}\) (loại)
Vậy...
tìm các số nguyên x,y thoả mãn đẳng thức: \(2x^2+y^2+3xy+3x+2y+2=0\)
Tìm các số nguyên x,y thoả mãn đẳng thức: \(2xy^2+x+y+1=x^2+2y^2+xy\)
Cho các số x,y thỏa mãn đẳng thức
tính giá trị biểu thức M=(x+y)2017+(x-2)2018+(y+ 1)2015
3x^2+3y^2+4xy-2x+2y+2=0
=>2x^2+4xy+2y^2+x^2-2x+1+y^2+2y+1=0
=>x=1 và y=-1
M=(1-1)^2017+(1-2)^2018+(-1+1)^2015=1
Tìm các giá trị nguyên x,y thoả mãn đẳng thức (y+2)x2+1=y2
Tìm các giá trị nguyên x,y thoả mãn đẳng thức \(\left(y+2\right)x^2+1=y^2\)
\(\left(y+2\right)x^2+1=y^2\Leftrightarrow x^2y+2x^2+1-y^2=0\Leftrightarrow\)\(x^2y+2x^2+4-y^2-3=0\Leftrightarrow x^2\left(y+2\right)-\left(y^2-4\right)=3\)\(\Leftrightarrow x^2\left(y+2\right)-\left(y+2\right)\left(y-2\right)=3\)
\(\Leftrightarrow\left(y+2\right)\left(x^2-y+2\right)=3\)
Ta có bảng:
y + 2 | 1 | 3 | -1 | -3 |
x2 - y + 2 | 3 | 1 | -3 | -1 |
y | -1 | 1 | -3 | -5 |
x | 0 | 0 | Không tồn tại | Không tồn tại |
KL | Chọn | Chọn |
Vậy ta tìm được cặp (x ; y) = (0 ; 1) và (0; -1).
\(PT\Leftrightarrow x^2\left(y+2\right)+4-y^2=3\)
\(\Leftrightarrow\left(y+2\right)\left(x^2+2-x\right)=3\)
+, Trường hợp: \(\hept{\begin{cases}y+2=3\\x^2+2-x=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=0\\y=1\end{cases}}\)
+, Trường hợp: \(\hept{\begin{cases}y+2=1\\x^2+2-x=3\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=0\\y=-1\end{cases}}\)
Tìm các số nguyên x, y, z, t thoả mãn đẳng thức sau:
|x-y| + |y-z| + |z-t| + |t-x| = 2015
Giúp mk nhé.cai nhanh mk tk cho. Tks
Cho đẳng thức :
x+(x+1) + (x+2) + .... + 19 +20 +21 = 0 với x là số nguyên .
1. Lập công thức tính tổng các số hạng ở vế trái.
2. Tìm x thoả mãn đẳng thức trên (vế trái là tổng các số nguyên liên tiếp)