Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tiffany Ho
Xem chi tiết
nguyen thi huong loan
1 tháng 4 2019 lúc 8:31

a) cm tg ABM = tg ACM moi dung phai ko ban

Ling ling 2k7
Xem chi tiết
Trần Ngân
21 tháng 6 2021 lúc 12:29

undefined

Bích Ngọc
Xem chi tiết
Thu Thao
18 tháng 5 2021 lúc 10:02

undefined

Nguyễn Lê Phước Thịnh
18 tháng 5 2021 lúc 10:03

a) Xét ΔABC vuông tại A và ΔHAC vuông tại H có 

\(\widehat{ACH}\) chung

Do đó: ΔABC\(\sim\)ΔHAC(g-g)

b) Áp dụng định lí Pytago vào ΔAHC vuông tại H, ta được:

\(AC^2=AH^2+HC^2\)

\(\Leftrightarrow HC^2=AC^2-AH^2=30^2-24^2=324\)

hay HC=18(cm)

Ta có: ΔABC∼ΔHAC(cmt)

nên \(\dfrac{AB}{HA}=\dfrac{BC}{AC}=\dfrac{AC}{HC}\)(Các cặp cạnh tương ứng tỉ lệ)

\(\Leftrightarrow\dfrac{AB}{24}=\dfrac{BC}{30}=\dfrac{30}{18}=\dfrac{5}{3}\)

Suy ra: \(\left\{{}\begin{matrix}\dfrac{AB}{24}=\dfrac{5}{3}\\\dfrac{BC}{30}=\dfrac{5}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=40\left(cm\right)\\BC=50\left(cm\right)\end{matrix}\right.\)

Vậy: HC=18cm; AB=40cm; BC=50cm

 

Nguyễn Lê Phước Thịnh
18 tháng 5 2021 lúc 10:06

c) Xét ΔAHM vuông tại M và ΔABH vuông tại H có 

\(\widehat{HAM}\) chung

Do đó: ΔAHM\(\sim\)ΔABH(g-g)

Suy ra: \(\dfrac{AH}{AB}=\dfrac{AM}{AH}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(AH^2=AM\cdot AB\)(1)

Xét ΔAHN vuông tại N và ΔACH vuông tại H có 

\(\widehat{NAH}\) chung

Do đó: ΔAHN\(\sim\)ΔACH(g-g)

Suy ra: \(\dfrac{AH}{AC}=\dfrac{AN}{AH}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(AH^2=AN\cdot AC\)(2)

Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)

hay \(\dfrac{AM}{AC}=\dfrac{AN}{AB}\)

Xét ΔAMN vuông tại A và ΔACB vuông tại A có 

\(\dfrac{AM}{AC}=\dfrac{AN}{AB}\)(cmt)

Do đó: ΔAMN\(\sim\)ΔACB(c-g-c)

NN_Kaito
Xem chi tiết
Bùi Ngọc Hùng
Xem chi tiết
nguyễn hoàng mai
Xem chi tiết
Emily -chan
Xem chi tiết
Tryechun🥶
15 tháng 3 2022 lúc 15:12

B

phung tuan anh phung tua...
15 tháng 3 2022 lúc 15:12

B

Tạ Tuấn Anh
15 tháng 3 2022 lúc 15:13

B

Hà thúy anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
31 tháng 1 2022 lúc 20:52

Đề sai rồi bạn

Bùi Khánh Chi
Xem chi tiết