Cho tam giác ABC vuông tại A,có góc C =30 độ.trên cạnh BC lấy điểm D sao cho BD=BA a,CM.tam giác ABD là tam giác đều b.qua D kẻ DE vuông góc với BC. E thuộc AC.CM BE là phân giác của góc ABC
a, tam giác ABE là tam giác gì ? chứng minh tam giác ABD = tam giác EBD
b, chứng minh DE vuông góc với BC
c,chứng minh BD là đường trung trực của AE
( Lưu ý : chỉ yêu cầu vẽ hình ) mọi người giúp mình với , mai mình thi rồi
Cho tam giác ABC vuông tại A và AB ( AC trên cạnh BC lấy điểm E sao cho BE = BA, kẻ BD là tia phân giác của góc ABC ( D thuộc AC )
a, tam giác ABE là tam giác gì ? chứng minh tam giác ABD = tam giác EBD
b, chứng minh DE vuông góc với BC
c,chứng minh BD là đường trung trực của AE
Giúp mình sớm sớm ạ mai mình thi rồi . Cảm ơn rất nhiều
a: Xét ΔBAD và ΔBED có
BA=BE
góc ABD=góc EBD
BD chung
Do đó: ΔBAD=ΔBED
=>BA=BE
=>ΔBAE cân tại B
b: ΔBAD=ΔBED
=>góc BED=90 độ
=>DE vuông góc với BC
c: ΔBAD=ΔBED
=>BA=BE và DA=DE
=>BD là trung trực của AE
Cho tam giác ABC vuông tại A (AB < AC). Tia BD là tia phân giác của góc ABC (D thuộc AC). Trên cạnh BC, lấy điểm E sao cho BE=BA. Chứng minh: Tam giác ABD = Tam giác EBD và DE vuông góc với BC
Xét \(\Delta ABD\)và \(\Delta EBD\)có:
\(AB=EB\)(giả thiết)
\(\widehat{ABD}=\widehat{EBD}\)(vì \(BD\)là phân giác của \(\widehat{ABC}\))
\(BD\)cạnh chung
\(\Rightarrow\Delta ABD=\Delta EBD\)(c.g.c)
\(\Rightarrow\widehat{BED}=\widehat{BAD}=90^o\)(Hai góc tương ứng)
\(\Rightarrow DE\perp BC\).
5 ) Chon tam giác ABC vuông tại A và AB < AC . Trên cạnh BC lấy điểm E sai cho BE = BA , kẻ BD là tia phân giác của góc ABC ( D thuộc AC
a) cmr Tam giác ABD = tam giác EBD
b ) cmr DE vuông góc với Bc
c) Gọi K giao diểm của BA và ED . cmr BK= BC
a: Xét ΔABD và ΔEBD có
BA=BE
\(\widehat{ABD}=\widehat{EBD}\)
BD chung
Do đó: ΔABD=ΔEBD
b: Ta có: ΔABD=ΔEBD
nên \(\widehat{BAD}=\widehat{BED}=90^0\)
hay DE\(\perp\)BC
c: Xét ΔADK vuông tại A và ΔEDC vuông tại E có
DA=DE
\(\widehat{ADK}=\widehat{EDC}\)
Do đó: ΔADK=ΔEDC
Suy ra: AK=EC
Ta có: BA+AK=BK
BE+EC=BC
mà BA=BE
và AK=EC
nên BK=BC
cho tam giác ABC vuông tại A; BD là phân giác của góc B (D thuộc AC). trên tia BC lấy điểm E sao cho BA = BE. a) chứng minh rằng: tam giác ABD = tam giác EBD và DE vuông góc với BE. b) chứng minh: BD là đường trung trực của đoạn tthẳng AE. c) Kẻ AH vuông góc với BC tại H. CHỨNG minh rằng: AD < DH
a)
và có:
BA = BE (gt)
(BD là tia phân giác góc B)
BD là cạnh chung
(c.g.c)
(hai góc tương ứng)
DE BE
b) và có:
Cho tam giác ABC vuông tại A và AB < AC. Trên cạnh BC lấy điểm E sao cho BE= BA, kẻ BD là tia phân giác của góc ABC (D thuộc AC).
a) Chứng minh: ∆ABD = ∆EBD
b) Chứng minh: DE vuông góc với BC
c) Gọi K là giao điểm của BA và ED. Chứng minh: BK = BC
a: Xét ΔABD và ΔEBD có
BA=BE
\(\widehat{ABD}=\widehat{EBD}\)
BD chung
Do đó: ΔABD=ΔEBD
b: Ta có: ΔBAD=ΔBED
nên \(\widehat{BAD}=\widehat{BED}=90^0\)
hay DE\(\perp\)BC
c: Xét ΔADK vuông tại A và ΔEDC vuông tại E có
DA=DE
\(\widehat{ADK}=\widehat{EDC}\)
Do đó: ΔADK=ΔEDC
Suy ra: AK=EC
Ta có: BA+AK=BK
BE+EC=BC
mà BA=BE
và AK=EC
nên BK=BC
Cho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm E sao cho BA=BE. Tia phân giác của góc B cắt AC tại D
a) Chứng minh tam giác ABD= tam giác EBD
b) Chứng minh BD là đường trung trực của AE
c) Kẻ AH vuông góc BC ( H thuộc BC ). Chứng minh AH //DE
d) Chứng minh góc ABC=góc EDC ( gợi ý: sử dụng tính chất 2 góc nhọn phụ nhau trong 2 tam giác vuông )
e) Gọi K là giao điểm của ED và BA. M là trung điểm của KC. Chứng minh B, D, M thẳng hàng
🤒🤒ÉT O ÉTTTTTT
e) vì AC vuông góc vs BK , KE ( kéo dài ED)vuông góc với BC mà AC và KE cắt nhau tại D => D là trực tâm của tam giác KBC => BD vuoogn góc với KC ( 1 ) .M là trung điểm của KC => BM là đường cao đồng thời là đường trung trực của tam giác KBC ( 2 ) . từ ( 1 ) và ( 2 ) => B, D , M thằng hàng
cho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm E sao cho BE=BA, trên tia BA lấy điểm F sao cho BF=BC. Kẻ BD là tia phân giác của góc ABC(D=AC). Chứng minh rằng:
a)DE vuông góc với BC
b) AD nhỏ hơn DC
c) tam giác ADF= tam giác EDC
a: Xét ΔDAB và ΔDEB có
BA=BE
góc ABD=góc EBD
BD chung
=>ΔDAB=ΔDEB
=>góc DEB=90 độ
=>DE vuông góc BC
b: AD=DE
mà DE<DC
nên AD<DC
c: Xét ΔDAF vuông tại A và ΔDEC vuông tại E có
DA=DE
AF=EC
=>ΔDAF=ΔDEC
Cho tam giác ABC vuông tại A có góc B bằng 60*. Lấy điểm D thuộc BC sao cho BD= BA
a) chứng minh: Tam giác ABD đều
b) cho AB=5cm, BC=13cm . Tính AC?
c) Kẻ BE là tia phân giác của góc B (E thuộc AC). Chứng minh: Tam giác BEC đều
d)!Từ E kẻ EKbvuoong góc BC (K thuộc BC). Tia DE cắt tia BA tại F. Chứng minh: tam giác FBC đều