Tính tổng: 4/1.3+4/3.5+4/5.7+4/7.9+....+4/2011.2013
Tính tổng 4/1.3+4/3.5+4/5.7+4/7.9+4/9.11+.....+4/2013.2015
\(\frac{4}{1.3}+\frac{4}{3.5}+...+\frac{4}{2013.2015}=2.\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{2013.2015}\right)=2.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2013}-\frac{1}{2015}\right)\)
\(=2.\left(\frac{2015}{2015}-\frac{1}{2015}\right)\)
\(=2.\frac{2014}{2015}\)
\(=\frac{4028}{2015}\)
Tính A=2/1.3-4/3.5+6/5.7-8/7.9+...-20/19.21
Tính giá trị biêut hức;B=2/1.3-4/3.5+6/5.7-8/7.9+...-96/95.97+98/97.99
Tính Tổng
a) 2/1.3+2/3.5+2/5.7.... 2/99.101
b) 5/1.3+5/3.5+5/5.7+...+5/99.101
c) 4/2.4+4/4.6+4/6.8+...+4/2008.2010
a) =1-1/3+1/3-1/5+1/5-1/7+...+1/99-1/101
=1-1/101
=100/101
b) =(2/1.3+2/3.5+2/5.7+...+2/99.101).2,5
=(1-1/3+1/3-1/5+1/5-1/7+...+1/99-1/101).2,5
=(1-1/101).2,5
=100/101.2,5
=250/101
c) =(2/2.4+2/4.6+2/6.8+...+2/2008-2/2010).2
=(1/2-1/4+1/4-1/6+1/6-1/8+...+1/2008-1/2010).2
=(1/2-1/2010).2
=1004/1005
Tính tổng
S=1^4/1.3+2^4/3.5+3^4/5.7+...+12^4/23.25
Bài này lớp 6 học rùi!
S = 312/25
Câu hỏi : tính nhanh tổng sau : M = 4/1.3 + 4/3.5 + 4/4.7 +...4/2011.2013
GIÚP IK TICK CHO
\(M=\frac{4}{1.3}+\frac{4}{3.5}+\frac{4}{5.7}+...+\frac{4}{2011.2013}\)
\(M=2.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{2011.2013}\right)\)
\(M=2.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2011}-\frac{1}{2013}\right)\)
\(M=2.\left(1-\frac{1}{2013}\right)\)
\(M=2.\frac{2012}{2013}\)
\(M=\frac{4024}{2013}\)
~Học tốt~
M=2.(2/1.3 + 2/3.5 +2/5.7+...+2/2011.2013)
M=2.(1-1/3 +1/3-1/5 +1/5-1/7+... +1/2011-1/2013)
M=2.(1-1/2013)
M=2.2012/2013
M=4024/2013
\(M=\frac{4}{1.3}+\frac{4}{3.5}+\frac{4}{5.7}+...+\frac{4}{2011.2013}\)
\(=2\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{2011.2013}\right)\)
\(=2\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2011}-\frac{1}{2013}\right)\)
\(=2\left(1-\frac{1}{2013}\right)\)
\(=2.\frac{2012}{2013}\)
\(=\frac{4024}{2013}\)
Study well ! >_<
Tính tổng :
M = \(\frac{4}{1.3}+\frac{4}{3.5}+\frac{4}{5.7}+.......+\frac{4}{2015.2017}\)
M = \(\frac{4}{1.3}+\frac{4}{3.5}+\frac{4}{5.7}+...+\frac{4}{2015.2017}\)4/1.3 + 4/3.5 + 4/5.7 + ... + 4/2015.2017
M = \(2.\frac{2}{1.3}+2.\frac{2}{3.5}+2.\frac{2}{5.7}+...+2.\frac{2}{2015.2017}\) 2 . 2/1.3 + 2 . 2/3.5 + 2 . 2/5.7 + ... + 2 . 2/2015.2017
M = 2 . ( 2/1.3 + 2/3.5 + 2/5.7 + ... + 2/2015.2017 )
M = 2 . ( 1 - 1/3 + 1/3 - 1/5 + 1/5 - 1/7 + ... + 1/2015 - 1/2017 )
M = 2 . ( 1 - 1/2017 )
M = 2 . 2016/2017
M = 4032/2017
\(M=2\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2015}-\frac{1}{2017}\right)\)
\(M=2\left(1-\frac{1}{2017}\right)\)
\(M=\frac{4032}{2017}\)
\(M=\frac{4}{1.3}+\frac{4}{3.5}+\frac{4}{5.7}+...+\frac{4}{2015.2017}\)
\(M=4\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2015.2017}\right)\)
\(M=4.\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2015.2017}\right)\)
\(M=2\left(1-\frac{1}{2017}\right)\)
\(M=2.\frac{2016}{2017}\)
\(M=\frac{4032}{2017}\)
a, tính a= 2/1.3+2/3.5+2/5.7+2/7.9+...+2/2017.2019
b, cho S= 1/31+1/32+1/33...+1/60. chứng minh S<4/5
chú ý / là phần
A = 2/1.3 + 2/3.5 + 2/5.7 + ... + 2/2017. 2019
= ( 1 - 1/3 ) + ( 1/3 - 1/5 ) + ... + (1/2017 - 1/2019 )
= 1 - 1/2019
= 2018/2019
S = 1/31 + 1/32 +...+ 1/60
Ta có các phân số : 1/31, 1/32, ..., 1/59 đều lớn hơn 1/60
Nên S > 1/60 + 1/60 + 1/60 +...+ 1/60 ( có tất cả 30 phân số )
= 30/60 = 1/2
Vì 1/2 < 4/5 nên S <4/5
Vậy, chứng tỏ S < 4/5
Chúc bạn học tốt !
\(\dfrac{4}{1.3}+\dfrac{4}{3.5}+\dfrac{4}{5.7}+...+\dfrac{4}{99.101}\)
tính hợp lý:
\(\dfrac{4}{1.3}+\dfrac{4}{3.5}+\dfrac{4}{5.7}+...+\dfrac{4}{99.101}\\ =\dfrac{4}{2}.\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)\\ =2.\left(1-\dfrac{1}{101}\right)\\ =2.\dfrac{100}{101}\\ =\dfrac{200}{101}\)
`4/1.3+4/3.5+4/5.7+...+4/99.101`
`=2(2/1.3+2/3.5+2/5.7+...+2/99.101)`
`=2(1-1/3+1/3-1/5+1/5-1/7+...+1/99-1/101)`
`=2(1-1/101)`
`=2. 100/101`
`=200/101`