\(\dfrac{4}{1.3}+\dfrac{4}{3.5}+\dfrac{4}{5.7}+...+\dfrac{4}{99.101}\\ =\dfrac{4}{2}.\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)\\ =2.\left(1-\dfrac{1}{101}\right)\\ =2.\dfrac{100}{101}\\ =\dfrac{200}{101}\)
`4/1.3+4/3.5+4/5.7+...+4/99.101`
`=2(2/1.3+2/3.5+2/5.7+...+2/99.101)`
`=2(1-1/3+1/3-1/5+1/5-1/7+...+1/99-1/101)`
`=2(1-1/101)`
`=2. 100/101`
`=200/101`