`5/(1.3)+5/(3.5)+....+5/(99.101)`
`=5/2(2/(1.3)+2/(3.5)+....+2/(99.101))`
`=5/2(1-1/3+1/3-1/5+...+1/99-1/101)`
`=5/2(1-1/101)`
`=5/2*100/101`
`=250/101`
Ta có: \(\dfrac{5}{1\cdot3}+\dfrac{5}{3\cdot5}+...+\dfrac{5}{99\cdot101}\)
\(=\dfrac{5}{2}\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{99\cdot101}\right)\)
\(=\dfrac{5}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)\)
\(=\dfrac{5}{2}\cdot\dfrac{100}{101}\)
\(=\dfrac{250}{101}\)