Tìm m để đa thức A(x)=x2-5mx+10-4 có 2 nghiệm mà nghiệm này bằng 2 lần nghiệm kia
cho đa thức f(x)=x^2-5mx+10m-4
tìm m để đa thức f(x) có 2 nghiệm mà nghiệm này bằng 2 lần nghiệm kia
Tìm tất cả các giá trị của m để đa thức A(x)=x2-5mx+10m-4 có 2 nghiệm mà nghiệm này bằng hai lần nghiệm kia
tìm tất cả các giá trị m để đa thức A(x)=x^2-5mx+10m-4 có 2 nghiệm mà nghiệm này bằng 2 lần nghiệm kia (ko dùng định lí vi-ét)
Tìm tất cả các giá trị của m để đa thức A(x) = x^2 - 5mx + 10m - 4 có 2 nghiệm mà nghiệm này = 2 lần nghiệm kia
Tìm m thỏa mãn đa thức A(x)= x2 -5mx+10-4 có nhiệm và nghiệm này gấp 2 lần nghiệm kia
Mình vẫn chưa hiểu câu hỏi lắm
"Nhiệm" là gì?
Và "nghiệm kia" là cái gì?
Tìm tất cả các giá trị của m để đa thức A(x) = x2 - 5 mx + 10m - 4 có 2 nghiệm mà nghiệm này bằng 2 lần nghiệm kia .
Tìm M để đa thức A(x) =x^2-5mx+10m-4.Có hai nghiệm mà nghiệm này = 2 lần nghiệm kia
Ta có:
\(A\left(x\right)=x^2-5mx+10m-4\)
\(\Leftrightarrow\Delta=\left(5m-4\right)^2\) \(\Leftrightarrow\left\{{}\begin{matrix}x_1=5m-2\\x_2=2\end{matrix}\right.\)
Ta có 2 trường hợp:
Trường hợp 1: Nếu \(x_1=2x_2\)
\(\Leftrightarrow5m-2=4\Leftrightarrow5m=6\Leftrightarrow m=\dfrac{6}{5}\)
Trường hợp 2: Nếu \(x_2=2x_1\)
\(\Leftrightarrow2\left(5m-2\right)=2\Leftrightarrow5m-2=1\)
\(\Leftrightarrow5m=3\Leftrightarrow m=3\div5=\dfrac{3}{5}\)
Vậy \(m=\dfrac{3}{5}\) hoặc \(m=\dfrac{6}{5}\) là các giá trị cần tìm
Tìm tất cả các giá trị của m để đa thức A(x) = x2 - 5mx +10m - 4 có hai nghiệm mà nghiệm này bằng 2 lần nghiệm kia.
Nếu là lớp 9 thì có thể dùng delta. Nhưng nếu lớp 7 thì theo cách này:
Giải:
Với \(x=2\) thay vào \(A\left(x\right)\) thì ta có:
\(A\left(2\right)=2^2-5m.2+10m-4\)
\(=4-10m+10m-4=0\)
\(\Rightarrow2\) là 1 nghiệm của đa thức \(A\left(x\right)\)
Vậy đa thức \(A\left(x\right)\) có hai nghiệm mà nghiệm này bằng hai lần nghiệm kia
\(\Leftrightarrow\) Nghiệm còn lại của đa thức \(A\left(x\right)\) là \(1\) hoặc là \(4\)
\(*)\) \(x=1\) là nghiệm của đa thức \(A\left(x\right)\Leftrightarrow A\left(1\right)=0\)
\(\Leftrightarrow5m-3=0\Leftrightarrow m=\dfrac{3}{5}\)
\(*)\) \(x=4\) là nghiệm của đa thức \(A\left(x\right)\Leftrightarrow A\left(4\right)=0\)
\(\Leftrightarrow12-10m=0\Leftrightarrow m=\dfrac{6}{5}\)
Vậy \(m=\dfrac{3}{5}\) hoặc \(m=\dfrac{6}{5}\) là các giá trị cần tìm
Tìm tất cả các giá trị của m để đa thức A(x)=\(x^2-5mx+10m-4\) có hai nghiệm mà nghiệm này bằng hai lần nghiệm kia
\(\text{Δ}=\left(-5m\right)^2-4\left(10m-4\right)\)
\(=25m^2-40m+16=\left(5m-4\right)^2>=0\)
Do đó: Phương trình luôn có hai nghiệm
Áp dụng Vi-et,ta được:
\(\left\{{}\begin{matrix}x_1+x_2=5m\\x_1x_2=10m-4\end{matrix}\right.\)(1)
Theo đề, ta có hệ phương trình: \(\left\{{}\begin{matrix}x_1=2x_2\\x_1+x_2=5m\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x_2=5m\\x_1=2x_2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_2=\dfrac{5}{3}m\\x_1=\dfrac{10}{3}m\end{matrix}\right.\)(2)
Từ (1) và (2) suy ra \(10m-4=\dfrac{5}{3}m\cdot\dfrac{10}{3}m\)
\(\Leftrightarrow m^2\cdot\dfrac{50}{9}-10m+4=0\)
\(\Leftrightarrow50m^2-90m+40=0\)
=>5m2-9m+4=0
=>(m-1)(5m-4)=0
=>m=4/5 hoặc m=1