Giúp mình nhak
Tìm a thuộc N de biểu thức sau có giá trị nguyên
40|2a-1|+15/10a-5
Tìm a € N để biểu thức sau có giá trị nguyên:
\(\frac{40\left|2a-1\right|+15}{10a-5}\)
Ta có :
\(\left|2a-1\right|=\orbr{\begin{cases}2a-1\left(a>0\right)\\1-2a\left(a=0\right)\end{cases}}\)
Đặt \(A=\frac{40\left|2a-1\right|+15}{10a-5}\)
+) Xét \(a>0\) ta có :
\(A=\frac{40\left|2a-1\right|+15}{10a-5}\)
\(A=\frac{40\left(2a-1\right)+15}{10a-5}\)
\(A=\frac{80a-40+15}{10a-5}\)
\(A=\frac{80a-40}{10a-5}+\frac{15}{10a-5}\)
\(A=\frac{8\left(10a-5\right)}{10a-5}+\frac{15}{10a-5}\)
\(A=8+\frac{15}{10a-5}\)
Để A nguyên thì \(\frac{15}{10a-5}\) nguyên hay \(15⋮\left(10a-5\right)\)\(\Rightarrow\)\(\left(10a-5\right)\inƯ\left(15\right)\)
Mà \(Ư\left(15\right)=\left\{1;-1;3;-3;5;-5;15;-15\right\}\)
Suy ra :
\(10a-5\) | \(1\) | \(-1\) | \(3\) | \(-3\) | \(5\) | \(-5\) | \(15\) | \(-15\) |
\(a\) | \(\frac{3}{5}\) | \(\frac{2}{5}\) | \(\frac{4}{5}\) | \(\frac{1}{5}\) | \(1\) | \(0\) | \(2\) | \(-1\) |
Mà \(a\inℕ\left(a>0\right)\) nên \(a\in\left\{-1;0;1;2\right\}\)
+) Xét \(a=0\) ta có :
\(A=\frac{40\left|2a-1\right|+15}{10a-5}\)
\(A=\frac{40\left|2.0-1\right|+15}{10.0-5}\)
\(A=\frac{40\left|0-1\right|+15}{0-5}\)
\(A=\frac{40+15}{-5}\)
\(A=-11\) ( A nguyên )
Vậy \(a\in\left\{-1;0;1;2\right\}\)
Chúc bạn học tốt ~
Đặt \(A=\frac{40\left|2a-1\right|+15}{10a-5}\)
\(\left|2a-1\right|=2a-1\)
\(\Rightarrow A=\frac{40.\left(2a-1\right)+15}{10a-5}=\frac{80a-40+15}{10a-5}=\frac{80a-25}{10a-5}\)
Để biểu thức A nhận giá trị nguyên thì \(80a-25⋮10a-5\)
Ta có: \(8\left(10a-5\right)⋮10a-5\)\(\Rightarrow80a-40⋮10a-5\)
\(\Rightarrow80a-25-\left(80a-40\right)⋮10a-5\)
\(\Rightarrow15⋮10a-5\Rightarrow\)\(10a-5\)thuộc Ư(15)
\(Ư\left(15\right)=\left\{1;3;5;15;-1;-3;-5;-15\right\}\)
\(\Rightarrow10a-5\in\left\{1;3;5;15;-1;-3;-5;-15\right\}\)
\(\Rightarrow10a\in\left\{6;8;10;4;3;0;-10\right\}\Rightarrow a\in\left\{\frac{3}{5};\frac{4}{5};1;\frac{2}{5};\frac{3}{10};0;-1\right\}\)
Do \(a\in N\)nên \(a\in\left\{1;0\right\}\)
M=\(\frac{40|2a-1|+15}{10a-5}\)
Tìm a \(\in\)N để biểu thức M có giá trị là số nguyên
tìm a thuộc N để biểu thức sau có giá trị nguyên :
A=\(\dfrac{40\left|2a-1\right|+15}{10a-5}\)
Đkxđ: a khác 0,5
\(A=\dfrac{\text{40|2a-1|+15}}{10a-5}=\dfrac{40\left|2a-1\right|+15}{5\left(2a-1\right)}=\dfrac{3}{2a-1}_-^+8\)
(Mình để cộng trừ 8 là do còn tùy vào 2a-1 dương hay âm nữa)
Để A nguyên thì \(\dfrac{3}{2a-1}\)nguyên <=>3 chia hết cho 2a-1 <=>2a-1 là Ư(3)
Mà Ư(3)={-3;-1;1;3}
Ta có bảng sau:
2a-1 | -3 | -1 | 1 | 3 |
a | -1 | 0 | 1 | 2 |
Do a là số tự nhiên và a khác 0,5=>a={0;1;2} thì A nguyên
Giúp mk với:
1) Cho 4 điểm bất kì trong đó không có 3 điểm nào thẳng hàng, số tam giác nhân các điểm đã cho làm đỉnh có được nhiều nhất là:
A.4 B.5 C.6 D.8
2) Tìm a € N để biểu thức sau có giá trị nguyên \(\frac{40\left|2a-1\right|+15}{10a-5}\)
Câu 1:
Trong 4 điểm ta chọn được 4 điểm làm đỉnh thứ nhất của tam giác, sau đó ta còn 3 điểm cho đỉnh thứ hai và 2 điểm cho đỉnh thứ ba.
Mà nếu như vậy thì mỗi tam giác bị lặp lại đúng sáu lần. Cho nên ta có công thức tính tam giác là:
\(\frac{4.3.2}{6}=\frac{24}{6}=4\)( tam giác )
Mình không hiểu rõ câu hỏi của cậu lắm nên cứ đọc đỡ tham khảo cách tính tam giác của mình nhé!
Câu 2
Vì \(|2a-1|\ge0\)với mọi a.
=> \(2a-1< 0\)hoặc \(2a-1\ge0\)
Vậy ta có hai trường hợp
TH1: Nếu 2a - 1 < 0 ( với ĐK: a <1/2 )
=> \(\frac{40|2a-1|+15}{10a-5}=\frac{40\left(-2a+1\right)+15}{10a-5}\)
\(=\frac{-40\left(2a-1\right)+15}{10a-5}\)
\(=\frac{-40\left(2a-1\right)+15}{5\left(2a-1\right)}\)
\(=\frac{-40\left(2a-1\right)}{5\left(2a-1\right)}+\frac{15}{5\left(2a-1\right)}\)
\(=-8+\frac{3}{2a-1}\)
Vì -8 thuộc Z
=> Để biểu thức trên có giá trị nguyên thì \(\frac{3}{2a-1}\)phải thuộc Z.
=> \(3⋮2a-1\)
=> 2a -1 thuộc Ư(3)
=> 2a - 1 thuộc { 1;-1;3;-3 }
=> 2a thuộc { 2;0;4;-2}
=> a thuộc { 1;0;2;-1 }
Đối chiếu với ĐK a < 1/2 thì chỉ có 0 và -1 thỏa mãn
=> x = 0 ; x = -1
TH2: Nếu \(2a-1\ge0\)( với ĐK: a > hoặc bằng 1/2 )
\(=>\frac{40|2a-1|+15}{10a-5}=\frac{40\left(2a-1\right)+15}{5\left(2a-1\right)}\)
\(=\frac{40\left(2a-1\right)}{5\left(2a-1\right)}+\frac{15}{5\left(2a-1\right)}\)
\(=8+\frac{3}{2a-1}\)
Vì 8 thuộc Z
=> Để biểu thức trên có giá trị nguyên thì 3/2a-1 phải thuộc Z
=> 3 chia hết cho 2a - 1
=> 2a-1 thuộc Ư(3)
=> 2a - 1 thuộc { 1;-1;3;-3 }
=> 2a thuộc { 2;0;4;-2}
=> a thuộc {1;0;2;-1}
Đối chiếu điều kiện a lớn hơn hoặc bằng 1/2 thì 1 và 2 thỏa mãn.
1) đáp án D
2) mình hôm nay lười lắm éo muốn làm thông cảm
1) Tìm a thuộc Z sao cho giá trị biểu thức 3a-5 /2a-9 có giá trị nguyên
tìm giá trị lớn nhất của biểu thức D =
\(\dfrac{2a^{2^{ }}-10a-1}{a^2-2a-1}+5\)
với a khác 1
Tìm a thuộc Z sao cho giá trị biểu thức 3a-5 /2a-9 có giá trị nguyên
Biểu thức nguyên khi 3a-5 chia hết cho 2a-9
=> 2(3a-5) chia hết cho 2a-9
2(3a-5)=6a-10=6a-27+17=3(2a-9)+17
=> 3a-5 chia hết cho 2a-9 khi 17 chia hết cho 2a-9. Có các TH:
+/ 2a-9=1 => a=10/2=5
+/ 2a-9=-1 => a=8/2=4
+/ 2a-9=17 => a=26/2=13
+/ 2a-9=-17 => a=-8/2=-4
ĐS: a={-4; 4; 5; 13}
Tìm a thuộc Z để :
a) biểu thức \(\frac{a+5}{a}\) có giá trị là số nguyên
b) biểu thức \(\frac{a-3}{2a}\) ------------------------------
Mong giúp ạ
a) ta có : \(\frac{a+5}{a}=1+\frac{5}{a}\)
Để A là số nguyên thì \(5⋮a\)
\(\Rightarrow a\inƯ\left(5\right)=\left\{-1;-5;1;5\right\}\)
tìm các số nguyên n sao cho biểu thức sau có giá trị nguyên A=\(\dfrac{3n+2}{n-1}\)
giúp mình với
\(A=\dfrac{3\left(n-1\right)+5}{n-1}=3+\dfrac{5}{n-1}\in Z\\ \Leftrightarrow n-1\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\\ \Leftrightarrow n\in\left\{-4;0;2;6\right\}\)