Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Quế Anh
Xem chi tiết
Katherine Lilly Filbert
15 tháng 5 2015 lúc 10:12

\(\frac{a}{n\left(n+a\right)}\)

=\(\frac{\left(n+a\right)-n}{n\left(n+a\right)}\)

=\(\frac{n+a}{n\left(n+a\right)}\)\(-\frac{n}{n\left(n+a\right)}\)

Rút gọn, ta được:

\(\frac{1}{n}\)\(-\frac{1}{n+a}\)

=>đpcm

 

A=\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)

A=\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)

A=\(\frac{1}{2}-\frac{1}{100}\)

A=\(\frac{50}{100}-\frac{1}{100}\)

A=\(\frac{49}{100}\)

TH
Xem chi tiết
Minh Triều
13 tháng 1 2016 lúc 5:21

 

D = 1.2 + 2.3+ 3.4 +...+ 99.100

=>3D=1.2.3+2.3.3+3.4.3+...+99.100.3

=1.2.(3-0)+2.3.(4-1)+3.4.(5-2)+....+99.100.(101-98)

=1.2.3-0.1.2+2.3.4-1.2.3+3.4.5-2.3.4+...+99.100.101-98.99.100

=99.100.101-0.1.2

=99.100.101

=999900

=>D=999900:3=333300

 

Dn = 1.2 + 2.3 + 3.4 +...+ n (n +1)

=>3Dn=1.2.3+2.3.3+3.4.3+...+n(n+1).3

=1.2.(3-0)+2.3.(4-1)+3.4.(5-2)+...+n.(n+1).[(n+2)-(n-1)]

=1.2.3-0.1.2+2.3.4-1.2.3+2.3.4-2.3.4+....+n(n+1)(n+2)-(n-1)n(n+1)

=n.(n+1).(n+2)-0.1.2

=n.(n+1)(n+2)

=>Dn=n.(n+1)(n+2):3

 =>điều cần chứng minh

Bùi Thị Thương Huyền
Xem chi tiết
Nguyễn Nguyệt Ánh
17 tháng 5 2021 lúc 18:30

1/2.3 + 1/3.4 + ....+ 1/ 99.100

= 1/2.(2+1) + 1/3.(3+1) + ... + 1/99.(99+1)

= 1/2 - 1/2+1  + 1/3 - 1/3+1  +....+ 1/99 - 1/99+1

= 1/2 - 1/99

= 49/100

Khách vãng lai đã xóa
Bùi Thị Thương Huyền
17 tháng 5 2021 lúc 19:31

teo ko bt

Khách vãng lai đã xóa
Lê Hải Yến
Xem chi tiết
Ngộ Phương Uyên
Xem chi tiết
Đặng Ngọc Thanh Nhàn
Xem chi tiết
Nguyễn Thanh Hằng
12 tháng 8 2017 lúc 11:25

1) Ta có :

\(\dfrac{1}{n}-\dfrac{1}{n+1}=\dfrac{n+1}{n\left(n+1\right)}-\dfrac{n}{n\left(n+1\right)}=\dfrac{1}{n\left(n+1\right)}\)

Vậy \(\dfrac{1}{n\left(n+1\right)}=\dfrac{1}{n}-\dfrac{1}{n+1}\rightarrowđpcm\)

2) \(A=\dfrac{1}{1.2}+\dfrac{1}{2.3}+............+\dfrac{1}{99.100}\)

\(\Leftrightarrow A=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+......+\dfrac{1}{99}-\dfrac{1}{100}\)

\(\Leftrightarrow A=1-\dfrac{1}{100}\)

\(\Leftrightarrow A=\dfrac{99}{100}\)

Earth-K-391
Xem chi tiết
Yeutoanhoc
22 tháng 5 2021 lúc 9:55

`1/(2.3)+1/(3.4)+......+1/(99/100)`
`=1/2-1/3+1/3-1/4+..........+1/99-1/100`
`=1/2-1/100`
`=49/100`

ʚƘεŋşɦїŋ ℌїɱʉɾαɞ‏
22 tháng 5 2021 lúc 9:59

Đặt A= \(\dfrac{1}{2.3}\)+\(\dfrac{1}{3.4}\)+...+\(\dfrac{1}{99.100}\)

      A= \(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\)\(\dfrac{1}{99}-\dfrac{1}{100}\)

     A=\(\dfrac{1}{2}-\dfrac{1}{100}\)

   A=\(\dfrac{49}{100}\)

\(\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\) 

\(=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\) 

\(=\dfrac{1}{2}-\dfrac{1}{100}\) 

\(=\dfrac{49}{100}\)

Nguyễn Duy Bằng
Xem chi tiết
Nguyễn Duy Bằng
9 tháng 7 2015 lúc 20:19

a,A = 1+2+3+…+(n-1)+n

A = n (n+1):2 b,3A = 1.2.3+2.3(4-1)+3.4.(5-2)+...+99.100.(101-98) 3

A = 1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+99.100.101-98.99.100 3

A = 99.100.101 A = 333300

Tổng quát: A = 1.2+2.3+3.4+.… + (n - 1) n A = (n-1)n(n+1): 3

lethihuyentrang
25 tháng 9 2018 lúc 21:12

a,số hạng của tổng là mở ngoặc 2n-1  đóng ngoặc chia 2+1                                                                                                                               = mở ngoặc 2n-2 chia 2+1                                                                                                                                                                                   = mở ngoặc n-1 đóng ngoặc nhaan chia 2+1                                                                                                                                                       = n-1+1=n vậy tổng  là mở ngoặc +n- đóng ngoặc nhân n chia . = n mũ  chia  = n nhân  mũ  chia  = n

Trương Quỳnh Hoa
Xem chi tiết