Cho ∆ MNP vuông tại M lấy điểm k sao cho MN= MK a )so sánh MN và NP b) CM góc MNK= MKN
Cho tam giác MNP có MN=MP.Gọi K là trung điểm của NP.
a)C/M tam giác MNK = MPK
b)C/m MK vuông góc NP
c)Trên cạnh MN,MP lần lươyj lấy A,B sao cho MA=MB.C/m góc MKA= góc MKB?
d)Giả sử MN=5cm,NP=6cm. Tính MK?
cho tam giác MNP vuông tại M , có MN=MP . Gọi K là trung điểm của cảnh NP .
a) chứng minh tam giác MKN=MKP và MK vUông NP
b)từ B kẻ đường vuông góc với NP , nó cắt MN tại E . Chứng minh EP//MK
C) chứng minh PE=NP
B ở đâu vậy bạn ? Trong đề làm gì có nói kẻ B mà từ B đã kẻ đường vuông góc rồi ?
CHO TAM GIÁC MNP VUÔNG TẠI N(NM<NP), TIA PHÂN GIÁC CỦA GÓC M CẮT CẠNH NP TẠI K.TRÊN MP LẤY ĐIỂM I SAO CHO MN=MI
A) CHỨNG MINH TAM GIÁC MNK = TAM GIÁC MIK. SUY RA TAM GIÁC NKI CÂN
B) TIA MN CẮT TIA IK TẠI E. CHỨNG MNH MK VUÔNG GÓC EP
a: Xét ΔMNK và ΔMIK có
MN=MI
góc NMK=góc IMK
MK chung
=>ΔMNK=ΔMIK
=>KN=KI
=>ΔKNI cân tại K
b: ΔMNK=ΔMIK
=>góc MIK=góc MNK=90 độ
b: Xét ΔMEP có
EI,PN là đường cao
EI cắt PN tại K
=>K là trực tâm
=>MK vuông góc EP
Cho tam giác MNP vuông M có cạnh MN<MP. Vẽ đường cao MH, từ H kẻ HL vuông góc với MN tại L. trên tia HL lấy điểm K sao cho L là trung điểm của HK
a) Chứng minh tam giác MHL= tam giác MKL
b) Chứng minh tam giác MKN là tam giác vuông
c) Hãy so sánh các cạnh của tam giác MKN
a: Xét ΔMHL vuông tại L và ΔMKL vuông tại L có
ML chung
HL=KL
Do đó: ΔMHL=ΔMKL
b: Xét ΔMHN và ΔMKN có
MH=MK
\(\widehat{HMN}=\widehat{KMN}\)
MN chung
Do đó: ΔMHN=ΔMKN
Suy ra: \(\widehat{MHN}=\widehat{MKN}=90^0\)
Cho tam giác MNP vuông tại M (MN<MP). Trên NP lấy Q sao cho NM=NQ. Qua Q, kẻ d vuông góc với NP, d cắt MP tại R.
a)Nếu góc MNP=2MPN. Tính số đo 2 góc đó?
b)CM: Tam giác MNR= tam giác QNR, từ đó suy ra NR là phân giác của góc MNP
c)Trên tia đối của tia MN,lấy K sao cho MK=MN.
CM: Tam giác PNK cân
Cho tam giác MNP vuông tại M (MN<MP). Trên NP lấy Q sao cho NM=NQ. Qua Q, kẻ d vuông góc với NP, d cắt MP tại R.
a)Nếu góc MNP=2MPN. Tính số đo 2 góc đó?
b)CM: Tam giác MNR= tam giác QNR, từ đó suy ra NR là phân giác của góc MNP
c)Trên tia đối của tia MN,lấy K sao cho MK=MN.
CM: Tam giác PNK cân
Cho tam giác MNP có góc M= 90° Góc N = 60° MN= 3cm NI là tia phân giác của góc N IK vuông góc với NP tại K a Chứng minh tam giác MNI=tam giác KNI b tam giác MNK là tam giác gì c so sánh MI và IP d Tính NP và MP
a: Xét ΔMNI vuông tại M và ΔKNI vuông tại K có
NI chung
\(\widehat{MNI}=\widehat{KNI}\)
Do đó: ΔMNI=ΔKNI
b: Ta có: ΔMNI=ΔKNI
nên NM=NK
Xét ΔNMK có NM=NK
nên ΔNMK cân tại N
mà \(\widehat{MNK}=60^0\)
nên ΔNMK đều
c: Ta có: ΔMNI=ΔKNI
nên MI=IK
mà IK<IP
nên MI<IP
d: Xét ΔMNP vuông tại M có
\(NP=\dfrac{MN}{\sin30^0}\)
\(=3:\dfrac{1}{2}=6\left(cm\right)\)
Áp dụng định lí Pytago vào ΔMNP vuông tại M, ta được:
\(MN^2+MP^2=NP^2\)
\(\Leftrightarrow MP=3\sqrt{3}\left(cm\right)\)
Cho tam giác MNP có góc M= 90° Góc N = 60° MN= 3cm NI là tia phân giác của góc N IK vuông góc với NP tại K a. Chứng minh tam giác MNI=tam giác KNI b. tam giác MNK là tam giác gì c. so sánh MI và IP d. Tính NP và MP
a: Xét ΔMNI vuông tại M và ΔKNI vuông tại K có
NI chung
\(\widehat{MNI}=\widehat{KNI}\)
Do đó: ΔMNI=ΔKNI
b: Ta có: ΔMNI=ΔKNI
nên NM=NK
Xét ΔMNK có NM=NK
nên ΔMNK cân tại N
Xét ΔMNK cân tại N có \(\widehat{MNK}=60^0\)
nên ΔMNK đều
c: Ta có: ΔMNI=ΔKNI
nên MI=IK
mà IK<IP
nên MI<IP
d: Xét ΔMNP vuông tại M có
\(NP=\dfrac{MN}{\sin30^0}\)
\(=3:\dfrac{1}{2}=6\left(cm\right)\)
Áp dụng định lí Pytago vào ΔMNP vuông tại M, ta được:
\(MN^2+MP^2=NP^2\)
\(\Leftrightarrow MP=3\sqrt{3}\left(cm\right)\)
cho tam giác MNP vuông tại M có MN=5,NP=13. Lấy điểm K trong tam giác MNP soa cho tam giác MNK vuông cân tại K. Gọi H là trung điểm của NP. Tính HK. (Gợi ý: NK cắt MP tại I)
Hình tự vẽ :(
Gọi \(Q\) là giao điểm của \(HK\) và \(MN\)
\(\Rightarrow KQ\) là đường trung tuyến của \(\Delta MNK\Rightarrow QM=QN\)
Xét \(\Delta MNI\) và \(\Delta KNM\) \(\left(\widehat{M}=\widehat{K}=90^o\right)\)
ta có: \(\widehat{N}\) là góc chung
\(\Rightarrow\Delta MNI\sim\Delta KNM\) \(\left(g-g\right)\)
mà \(\Delta KNM\) là tam giác vuông cân tại \(\widehat{K}\) \(\left(gt\right)\)
\(\Rightarrow\Delta MNI\) là tam giác vuông cân tại \(\widehat{M}\)
\(\Rightarrow MN=MI\) \(\Rightarrow MI=5\)
mà \(MK\) là đường cao của \(\Delta MNI\)
\(\Rightarrow MK\) cũng là trung tuyến của \(\Delta MNI\)
\(\Rightarrow KN=KI\)
Xét \(\Delta MNI\) ta có:
\(QN=QM\) \(\left(cmt\right)\)
\(KN=KI\) \(\left(cmt\right)\)
\(\Rightarrow QK\) là đường trung bình của \(\Delta MNI\)
\(\Rightarrow QK=\dfrac{MI}{2}=\dfrac{5}{2}\)
Xét \(\Delta MNP\) ta có:
\(QN=QM\) \(\left(cmt\right)\)
\(HN=HP\) (\(H\) là trung điểm của \(NP\))
\(\Rightarrow QH\) là đường trung bình của \(\Delta MNP\)
\(\Rightarrow QH=\dfrac{MP}{2}=\dfrac{13}{2}\)
Ta có \(QH=QK+HK\)
\(\Rightarrow HK=QH-QK=\dfrac{13}{2}-\dfrac{5}{2}=4\)
Vậy \(HK=4\)