a: Xét ΔMHL vuông tại L và ΔMKL vuông tại L có
ML chung
HL=KL
Do đó: ΔMHL=ΔMKL
b: Xét ΔMHN và ΔMKN có
MH=MK
\(\widehat{HMN}=\widehat{KMN}\)
MN chung
Do đó: ΔMHN=ΔMKN
Suy ra: \(\widehat{MHN}=\widehat{MKN}=90^0\)
a: Xét ΔMHL vuông tại L và ΔMKL vuông tại L có
ML chung
HL=KL
Do đó: ΔMHL=ΔMKL
b: Xét ΔMHN và ΔMKN có
MH=MK
\(\widehat{HMN}=\widehat{KMN}\)
MN chung
Do đó: ΔMHN=ΔMKN
Suy ra: \(\widehat{MHN}=\widehat{MKN}=90^0\)
cho tam giác MNP vuông tại M có cạnh MN<MP. Vẽ đường cao MH, từ H kẻ HL vuông gác với MN tại L. Trên tia HL lấy điểm K sao cho L là trung điểm của HK (vẽ hình giúp mình :((( )
a) Chứng Minh tam giác MHL= tam giác MKL
b) Chứng minh tam giác MKN là tam giác vuông
c) Hãy so sánh các cạnh của tam giác MKN
Cho tam giác MNP vuông tại M. Gọi K là trung điểm của MP. Trên tia đối của tia KN lấy điểm H sao cho KN = KH. Chứng minh rằng :
a. tam giác MKN = tam giác PKH
b. MH = NP và MH // NP
c. HP vuông góc MP
cho tam giác MNP vuông tại M , có MN=MP . Gọi K là trung điểm của cảnh NP .
a) chứng minh tam giác MKN=MKP và MK vUông NP
b)từ B kẻ đường vuông góc với NP , nó cắt MN tại E . Chứng minh EP//MK
C) chứng minh PE=NP
Cho tam giác MNP vuông tại M. Gọi K là trung điểm của MP. Trên tia đối của tia KN lấy điểm H sao cho KN=KH. Chứng mi rằng:
a, tam giác MKN= tam giác PKH
b, MH = NP và MH // NP
c,HP vuông góc với MP
cho tam giác MNP vuông tại M có MN = 4cm , MP =3cm
a, Tính NP và so sánh các góc trong tam giác MNP
b , Trên Tia đối của PM lấy A sao cho P là trung điểm của AM . Qua P dựng đường thẳng vuông góc với AM cắt AN tại C . Chứng minh tam giác CPM = tam giác CPA
c ,Chứng minh CM = CN
d , Gọi G là giao điểm của MC và NP. Tính NG
e ,Từ A kẻ đường thẳng vuông góc với đường thẳng NP tại D . Vẽ tia Nx là tia phân giác của góc MNP . Vẽ tia Ay là phân giác góc PaD . Tia Ay cắt các tia NP , Nx ,NM lần lượt tại E ,H ,K . Chứng minh tam giác NEK cân
cho tam giác MNP vuông tại M. gọi K là trung điểm MP. chọn điểm H sao cho K là trung điểm NH
a. chứng minh tam giác MKN= tam giác PKH
b.Chứng minh MH=NP và MH//NP
c.Chứng minh HP vuông góc MP
cho tam giac MNP vuông tại M( MN>MP). trên cạnh NP lấy điểm E sao cho NE = NM, qua E kẻ đừơng thăng vuông góc với NP cắt MP tại D
a) chứng minh tam giác MND = tam giác END và ND phân giác của MNP
b) trên tia đối của tia MN, lấy điểm F sao cho MF = DP chứng minh tam giác MDF= tam giác EDP
c) minh 3 điểm E , D , F thẳng hàng
d) chứng m ND vuông góc với CF
Cho tam giác MNP cân tại M, kẻ MH vuông góc với NP tại H. Gọi A là trung điểm của NH. Trên tia đối của tia AM lấy điểm B sao cho AB=AM
a) Chứng minh tam giác MAH=tam giác BAN và BN vuông góc với NP
b) So sánh BN với MN; góc NMA với AMH
c) Gọi I là trung điểm của BP. Chứng minh M,H,I thẳng hàng và NI=1/2 BP
1. Cho tam giác MNP cân tại M vẽ MH thuộc NP (H thuộc NP)
a) Chứng minh NH = PH
b) Cho MH = 4 cm; NH = 3 cm. Tính MN
2. Cho tam giác MNP vuông tại M, có góc N = 60o và MN = 5 cm. Tia phân giác của góc N cắt MP tại D. Kẻ DE vuông góc với PN tại E
a) Chứng minh: tam giác MNP = tam giác END
b) Chứng minh: tam giác MNE là tam giác đều
c) Tính độ dài cạnh PN
3. Cho tam giác MNP cân tại M, góc M = 30o; NP = 2 cm. Trên cạnh MP lấy điểm Q sao cho góc PNQ = 60o. Tính độ dài MQ