Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phạm Kim Oanh
Xem chi tiết
Phạm Kim Oanh
14 tháng 9 2021 lúc 0:32

Lời giải chi tiết như sau :undefined

Lê Song Phương
Xem chi tiết
Lê Song Phương
Xem chi tiết
Phạm Ngọc Tấn
6 tháng 8 2023 lúc 18:18

1. Để tìm các đa thức P(x) thỏa mãn điều kiện P(2014) = 2046 và P(x) = P(x^2 + 1) - 33 + 32, ∀x ≥ 0, ta có thể sử dụng phương pháp đệ quy. Bước 1: Xác định bậc của đa thức P(x). Vì không có thông tin về bậc của đa thức, chúng ta sẽ giả sử nó là một hằng số n. Bước 2: Xây dựng công thức tổng quát cho đa thức P(x). Với bậc n đã xác định, ta có: P(x) = a_n * x^n + a_{n-1} * x^{n-1} + ... + a_0 Bước 3: Áp dụng điều kiện để tìm các hệ số a_i. Thay x = 2014 vào biểu thức và giải phương trình: P(2014) = a_n * (2014)^n + a_{n-1} * (2014)^{n-1} + ... + a_0 = 2046 Giải phương trình này để tìm các giá trị của các hệ số. Bước 4: Áp dụng công thức tái lập để tính toán các giá trị tiếp theo của P(x): P(x) = P(x^2+1)-33+32 Áp dụng công thức này lặp lại cho đến khi đạt được kết quả cuối cùng. 2. Để tìm các đa thức P(x) ∈ Z[x] bậc n thỏa mãn điều kiện [P(2x)]^2 = 16P(x^2), ∀x ∈ R, ta có thể sử dụng phương pháp đệ quy tương tự như trên. Bước 1: Xác định bậc của đa thức P(x). Giả sử bậc của P(x) là n. Bước 2: Xây dựng công thức tổng quát cho P(x): P(x) = a_n * x^n + a_{n-1} * x^{n-1} + ... + a_0 Bước 3: Áp dụng điều kiện để tìm các hệ số a_i. Thay x = 2x vào biểu thức và giải phương trình: [P(2x)]^2 = (a_n * (2x)^n + a_{n-1} * (2x)^{n-1} + ... + a_0)^2 = 16P(x^2) Giải phương trình này để tìm các giá trị của các hệ số. Bước 4: Áp dụng công thức tái lập để tính toán các giá trị tiếp theo của P(x): [P(4x)]^2 = (a_n * (4x)^n + a_{n-1} * (4x)^{n-1} + ... + a_0)^2 = 16P(x^2) Lặp lại quá trình này cho đến khi đạt được kết quả cuối cùng.

 

Nguyễn Phan Mỹ Trân
Xem chi tiết
Phạm Kim Oanh
Xem chi tiết
Phạm Kim Oanh
Xem chi tiết
Nguyễn Việt Lâm
20 tháng 3 2022 lúc 12:16

\(x^3=x^3-1+1=\left(x-1\right)\left(x^2+x+1\right)+1\)

\(\Rightarrow x^3\equiv1\left(\text{mod }x^2+x+1\right)\)

\(\Rightarrow P\left(x^3\right)\equiv P\left(1\right)\left(\text{mod }x^2+x+1\right)\) 

Và \(xQ\left(x^3\right)\equiv xQ\left(1\right)\left(\text{mod }x^2+x+1\right)\)

\(\Rightarrow P\left(x^3\right)+xQ\left(x^3\right)\equiv P\left(1\right)+xQ\left(1\right)\left(\text{mod }x^2+x+1\right)\)  với mọi x nguyên

\(\Rightarrow P\left(1\right)+x.Q\left(1\right)\) chia hết \(x^2+x+1\) với mọi x nguyên

Điều này xảy ra khi và chỉ khi \(P\left(1\right)=Q\left(1\right)=0\)

\(\Rightarrow P\left(x\right)\) có nghiệm \(x=1\) hay \(P\left(x\right)\) chia hết cho \(x-1\)

Lương Thùy Linh
Xem chi tiết
Pham Van Hung
9 tháng 8 2018 lúc 12:45

Thay x = -3 thì 1 là nghiệm của P(x)

Thay x = 5 thì 5 là nghiệm của P(x)

Vậy P(x) có ít nhất 2 nghiệm là 1 và 5.

Chúc bạn học tốt.

EnderCraft Gaming
Xem chi tiết
Phạm Kim Oanh
Xem chi tiết
Nguyễn Việt Lâm
13 tháng 9 2021 lúc 18:56

Đặt \(g\left(x\right)=f\left(x\right)-x-1\Rightarrow g\left(2\right)=g\left(3\right)=g\left(4\right)=0\)

\(\Rightarrow g\left(x\right)\) có 3 nghiệm 2;3;4

\(\Rightarrow g\left(x\right)=a\left(x-2\right)\left(x-3\right)\left(x-4\right)\)

\(\Rightarrow f\left(x\right)=g\left(x\right)+x+1=a\left(x-2\right)\left(x-3\right)\left(x-4\right)+x+1\)

\(f\left(5\right)=10\Rightarrow a\left(5-2\right)\left(5-3\right)\left(5-4\right)+5+1=10\)

\(\Rightarrow a=\dfrac{2}{3}\)

\(\Rightarrow f\left(x\right)=\dfrac{2}{3}\left(x-2\right)\left(x-3\right)\left(x-4\right)+x+1\)

\(\Rightarrow f\left(6\right)=\dfrac{2}{3}.4.3.2+6+1=...\)