1 + 1/2 * (1 + 2) + 1/3 * (1 + 2 + 3) + 1/4 * (1 + 2 + 3 + 4) +...+ 1 2023 (1+2+...+2023)
1 + 1/2 * (1 + 2) + 1/3 * (1 + 2 + 3) + 1/4 * (1 + 2 + 3 + 4) +...+ 1 2023 (1+2+...+2023)
1+1/2.(1+2)+1/3.(1+2+3)+1/4.(1+2+3+4)+...+1/2023.(1+2+3+...+2023)
=1+1/2.(1+2).2/2+1/3.(1+3).3/2+1/4.(1+4).4/2+...+1/2023.(1+2+3+...+2023).2023/2
=2/2+3/2+4/2+...+2023/2
=2+3+4+...+2023/2
=2025.2022/2/2
=1023637,5
tham khảo thôi nha
2023-1/2*(1+2)-1/3*(1+2+3)-1/4*(1+2+3+4)-...-1/2022*(1+2+3+4+...+2022)
Tính: 1/(1+2+3) + 1/(1+2+3+4) + 1/(1+2+3+4+5) + ... + 1/(1+2+3+...+2023)
Lời giải:
Gọi tổng trên là $A$
$A=\frac{1}{\frac{3.4}{2}}+\frac{1}{\frac{4.5}{2}}+....+\frac{1}{\frac{2023.2024}{2}}$
$=\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{2023.2024}$
$=2(\frac{4-3}{3.4}+\frac{5-4}{4.5}+...+\frac{2024-2023}{2023.2024})$
$=2(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+....+\frac{1}{2023}-\frac{1}{2024})$
$=2(\frac{1}{3}-\frac{1}{2024})=\frac{2021}{3036}$
Cho M gồm 2023 số hạng và M=1/5+2/5^2+3/5^3+4/5^4+...+2023/5^2023. Chứng minh rằng M nhỏ hơn 1/3
M=(1/5+1/5^2+1/5^3+...+1/5^2023) + 1/5x(1/5+1/5^2+1/5^3+...+1/5^2022) + ... + 1/5^2021x(1/5+1/5^2) + 1/5^2022x1/5
Xét biểu thức N=1/5+1/5^2+1/5^3 + ... + 1/5^k (K>0, k thuộc Z)
=> 5N=1+1/5+1/5^2+1/5^3+...+1/5^(k-1)
=> 4N= 5N - N =1 - 1/5^k
=> 1/5+1/5^2+1/5^3 + ... + 1/5^k = 1/4x(1-1/5^k)
Thay vào biểu thức M, ta có:
M= 1/4x(1-1/5^2023) + 1/5x1/4x(1-1/5^2022) + ... + 1/5^2021x1/4x(1-1/5^2) + 1/5^2022x1/4x(1-1/5)
=> 4M = (1+1/5+1/5^2+...+1/5^2022) - 2023/5^2023
=> 4M = 5/4x(1-1/5^2023)-2023/5^2023 < 5/4
=> M < 5/16 < 1/3
Vậy M < 1/3 [ vượt chỉ tiêu nhé =)) ]
Cho S=\(\dfrac{1}{4}+\dfrac{2}{4^2}+\dfrac{3}{4^3}+\dfrac{4}{4^4}+...+\dfrac{2023}{4^{2023}}\). Chứng minh S < \(\dfrac{1}{2}\)
=> 4S = 1 + 2/4 + 3/4^2 +...+ 2023/4^2022
=> 4S-S = 1 + (2/4-1/4) + (3/4^2 - 2/4^2) +...+ (2023/4^2022 - 2022/4^2022) - 2023/4^2023
=> 3S = 1 + 1/4 + 1/4^2 +...+ 1/4^2022 - 2023/4^2023
=> 12S = 4 + 1 + 1/4 +... + 1/4^2021 - 2023/4^2022
=> 12S - 3S = 4 + (1-1) + (1/4-1/4) +... + (1/4^2021 - 1/4^2021) - 1/4^2022 - 2023/4^2022 + 2023/4^2023
=> 9S = 4 - 1/4^2022 - 2023/4^2022 + 2023/4^2023
= 4- 2024/4^2022 + 2023/4^2023
Do 2024/4^2022 > 2024/4^2023 > 2023/4^2023 nên - 2024/4^2022 + 2023/4^2023 < 0
=> 9S < 4 < 9/2
=> S < 1/2 (đpcm)
Cho S=1+3+3^2+....+3^2023
Chứng tỏ S chia hết cho 4
CHo S=\(\dfrac{1}{4}+\dfrac{2}{4^2}+\dfrac{3}{4^3}+\dfrac{4}{4^4}+...+\dfrac{2023}{4^{2023}}\). Chứng minh S < \(\dfrac{1}{2}\)
Ta có S = \(\dfrac{1}{4}+\dfrac{2}{4^2}+\dfrac{3}{4^3}+...+\dfrac{2023}{4^{2023}}\)
4S = \(1+\dfrac{2}{4}+\dfrac{3}{4^2}+...+\dfrac{2023}{4^{2022}}\)
4S - S = ( \(1+\dfrac{2}{4}+\dfrac{3}{4^2}+...+\dfrac{2023}{4^{2022}}\) ) - ( \(\dfrac{1}{4}+\dfrac{2}{4^2}+\dfrac{3}{4^3}+...+\dfrac{2023}{4^{2023}}\))
3S = 1 + \(\dfrac{1}{4}+\dfrac{1}{4^2}+...+\dfrac{1}{4^{2022}}-\dfrac{2023}{4^{2023}}\)
Đặt A = 1 + \(\dfrac{1}{4}+\dfrac{1}{4^2}+...+\dfrac{1}{4^{2022}}\)
4A = 4 + 1 + \(\dfrac{1}{4}+...+\dfrac{1}{4^{2021}}\)
4A - A = ( 4 + 1 + \(\dfrac{1}{4}+...+\dfrac{1}{4^{2021}}\)) - ( 1 + \(\dfrac{1}{4}+\dfrac{1}{4^2}+...+\dfrac{1}{4^{2022}}\))
3A = 4 - \(\dfrac{1}{4^{2022}}\)
A = ( 4 - \(\dfrac{1}{4^{2022}}\)) : 3 = \(\dfrac{4}{3}-\dfrac{1}{4^{2022}\cdot3}\)
⇒ 3S = \(\dfrac{4}{3}-\dfrac{1}{4^{2022}\cdot3}\) - \(\dfrac{2023}{4^{2023}}\)
S = ( \(\dfrac{4}{3}-\dfrac{1}{4^{2022}\cdot3}\) - \(\dfrac{2023}{4^{2023}}\)) : 3 = \(\dfrac{4}{9}-\dfrac{1}{4^{2022}\cdot3^2}-\dfrac{1}{4^{2023}\cdot3}< \dfrac{4}{9}< \dfrac{1}{2}\)
Vậy S < \(\dfrac{1}{2}\)
1. a,23/27-(11/17-4/27) +(28/17) b,2/3 .7/9 +2/3 .2/9-2/9 c,7/3:5/11-1/3.11/5 d,(1+1/2) .(1+1/3) .(1+1/4).......(1+1/2023) e, (1-1/2).(1-1/3).....(1-1/2023) f,13/17.5/11-7/13.2/5+5/11.4/17-2/5.6/13 g, 1/2+1/3.1/4-1/5:1/6 2,so sánh n+2/n+3 và n+1/n+2 ( n là số tự nhiên)
1:
a: =23/27-11/17+4/27+28/17
=23/27+4/27+28/17-11/17
=1+1=2
b: \(=\dfrac{2}{3}\cdot\left(\dfrac{7}{9}+\dfrac{2}{9}\right)-\dfrac{2}{9}\)
=2/3-2/9
=6/9-2/9
=4/9
c: \(=\dfrac{11}{5}\cdot\dfrac{7}{3}-\dfrac{1}{3}\cdot\dfrac{11}{5}\)
=11/5(7/3-1/3)
=11/5*2
=22/5
d: \(=\dfrac{3}{2}\cdot\dfrac{4}{3}\cdot...\cdot\dfrac{2024}{2023}=\dfrac{2024}{2}=1012\)
e: \(=\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot...\cdot\dfrac{2022}{2023}=\dfrac{1}{2023}\)
2^2+6^3+12^4+......................................+[(k+1)*k]^(k+1)+.......................+(2022*2023)^2023
@Bé Bin bạn có biết cách giải không zậy
CMR1×2-1/2!+2×3-1/2!+3×4-1/4!+...+2023×2024/2024!<2
TH1
42:x=6
x= 42 :6
X= 7
TH 2
36:x = 6
X = 36: 6
X= 6