Violympic toán 6

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Kim Ngọc

Cho S=\(\dfrac{1}{4}+\dfrac{2}{4^2}+\dfrac{3}{4^3}+\dfrac{4}{4^4}+...+\dfrac{2023}{4^{2023}}\). Chứng minh S < \(\dfrac{1}{2}\)

Vũ Đào
16 tháng 4 2023 lúc 10:42

=> 4S = 1 + 2/4 + 3/4^2 +...+ 2023/4^2022

=> 4S-S = 1 + (2/4-1/4) + (3/4^2 - 2/4^2) +...+ (2023/4^2022 - 2022/4^2022) - 2023/4^2023

=> 3S = 1 + 1/4 + 1/4^2 +...+ 1/4^2022 - 2023/4^2023

=> 12S = 4 + 1 + 1/4 +... + 1/4^2021 - 2023/4^2022

=> 12S - 3S = 4 + (1-1) + (1/4-1/4) +... + (1/4^2021 - 1/4^2021)  - 1/4^2022 - 2023/4^2022 + 2023/4^2023

=> 9S = 4 -  1/4^2022 - 2023/4^2022 + 2023/4^2023

= 4- 2024/4^2022 + 2023/4^2023

Do 2024/4^2022 > 2024/4^2023 > 2023/4^2023 nên - 2024/4^2022 + 2023/4^2023 < 0

=> 9S < 4 < 9/2

=> S < 1/2 (đpcm)

Trần Thị Huế
30 tháng 8 2023 lúc 13:01

Cho S=1+3+3^2+....+3^2023

Chứng tỏ S chia hết cho 4


Các câu hỏi tương tự
Linh Linh
Xem chi tiết
Xuan Tran
Xem chi tiết
dream XD
Xem chi tiết
Hoàng Diệp Linh
Xem chi tiết
Alan Walker
Xem chi tiết
phương hoàng
Xem chi tiết
Xuan Tran
Xem chi tiết
Tanya
Xem chi tiết
Nguyệt Nguyệt
Xem chi tiết