=> 4S = 1 + 2/4 + 3/4^2 +...+ 2023/4^2022
=> 4S-S = 1 + (2/4-1/4) + (3/4^2 - 2/4^2) +...+ (2023/4^2022 - 2022/4^2022) - 2023/4^2023
=> 3S = 1 + 1/4 + 1/4^2 +...+ 1/4^2022 - 2023/4^2023
=> 12S = 4 + 1 + 1/4 +... + 1/4^2021 - 2023/4^2022
=> 12S - 3S = 4 + (1-1) + (1/4-1/4) +... + (1/4^2021 - 1/4^2021) - 1/4^2022 - 2023/4^2022 + 2023/4^2023
=> 9S = 4 - 1/4^2022 - 2023/4^2022 + 2023/4^2023
= 4- 2024/4^2022 + 2023/4^2023
Do 2024/4^2022 > 2024/4^2023 > 2023/4^2023 nên - 2024/4^2022 + 2023/4^2023 < 0
=> 9S < 4 < 9/2
=> S < 1/2 (đpcm)
Cho S=1+3+3^2+....+3^2023
Chứng tỏ S chia hết cho 4