Tính : \(E=1\cdot3^3+3\cdot5^3+5\cdot7^3+...+97\cdot99^3\)
\(D=1\cdot3\cdot5-3\cdot5\cdot7+5\cdot7\cdot9-...+97\cdot99\cdot101\)
8D= 1.3.5.8 - 3.5.7.8 + 5.7.9.8 - ... + 97.99.101.8
8D=1.3.5.(7+1)-3.5.7.(9-1)+5.7.9.(11-3) - ... + 97.99.101.(103-95)
8D=1.3.5.7+3.5-3.5.7.9-1.3.5.7+5.7.9.11-3.5.7.9-...+97.99.101.103-95.97.99.101
8D=3.5+97.99.101.103=99900024
D=12487503
\(E=\frac{2}{1\cdot3}\cdot\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{97\cdot99}\)
\(E=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{97.99}\)
\(E=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\)
\(E=\frac{1}{1}-\frac{1}{99}\)
\(E=\frac{98}{99}\)
E= \(\frac{2}{1.3}.\frac{2}{3.5}+...+\frac{2}{97.99}\)
E = 1 - \(\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{97}-\frac{1}{99}\)
E = 1 - 1/99
E = 98 / 99
Chúc bạn học tốt
Rút gọn \(A=\frac{2\cdot6\cdot10+6\cdot10\cdot14+10\cdot14\cdot18+...+194\cdot198\cdot202}{1\cdot3\cdot5+3\cdot5\cdot7+...+97\cdot99\cdot101}\)
\(\frac{2.6.10+6.10.14+10.14.18+...+194.198.202}{1.3.5+3.5.7+...+97.99.101}\)
\(=\frac{2^3.1.3.5+2^3.3.5.7+2^3.97.99.101}{1.3.5+3.5.7+...+97.99.101}\)
\(=\frac{2^3\left(1.3.5+3.5.7+...+97.99.101\right)}{1.3.5+3.5.7+...+97.99.101}\)
\(=\frac{2^3}{1}=8\)
Vậy A = 8
tính
S=\(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{97\cdot99}\)
giúp mình các bạn ơi mình sắp học rồi nhanh nhanh mình tích cho
\(2S=\frac{2}{1}-\frac{2}{3}+\frac{2}{3}-\frac{2}{5}+...+\frac{2}{97}-\frac{2}{99}\)
\(2S=2-\frac{2}{99}\)
\(2S=\frac{196}{99}\)
\(S=\frac{196}{99}\cdot\frac{1}{2}=\frac{98}{99}\)
Ta có: S=2/1.3+2/3.5+...+2/97.99
S= 2/2.(1-1/3+1/3-1/5+...+1/97-1/99)
S= 1-1/99=98/99
\(S=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{97.99}\)
\(2S=2\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{97.99}\right)\)
\(\Rightarrow S=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\)
\(S=1-\frac{1}{99}\)
\(S=\frac{98}{99}\)
Tính \(E=1\cdot3^3+3\cdot5^3+5\cdot7^3+...+49\cdot51^3\)
Tính \(F=1\cdot99^2+2\cdot98^2+3\cdot97^2+...+49\cdot51^2\)
Giúp ! Giúp ! Giúp, nhanh lên.
Có thể hướng làm là phân tích + rút gọn đấy
tìm x thuộc z, biết:
(\(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{97\cdot99}\left(\right)-x=\frac{-100}{99}\)
\(\left(1-\frac{1}{3}+...+\frac{1}{97}-\frac{1}{99}\right)-x\)\(=\frac{-100}{99}\)
\(\left(1-\frac{1}{99}\right)-x=\frac{-100}{99}\)
\(\frac{98}{99}-x=\frac{-100}{99}\)
\(x=\frac{98}{99}-\left(-\frac{100}{99}\right)\)
\(x=\frac{198}{99}=2\)
CHÚC BN HOK TỐT!
ĐÚNG THÌ K CHO MK NHA!
(2/1.3 + 2/3.5 + ... + 2/97.99) - x = -100/99
=>( 1/1 - 1/3 + 1/3 - 1/5 + ... + 1/97 + 1/99) - x = -100/99
=>( 1/1 - 1/99) - x = -100/99
=>98/99 - x = -100/99
=>x = 98/99 - (-100/99)
=>x = 198/99 = 2
tính rồi so sánh m và n biết
m = \(\frac{3}{1\cdot3}\)+ \(\frac{3}{3\cdot5}\)+\(\frac{3}{5\cdot7}\)+...+\(\frac{2}{99\cdot100}\)
n = \(\frac{3}{1\cdot3}\)+ \(\frac{3}{3\cdot5}\)+ \(\frac{3}{5\cdot7}\)+ ...+ \(\frac{3}{97\cdot99}\)
rồi, mấy bạn giải ra giùm mk nhé. 4h mk di học rồi cho nên trước 4 giờ các bạn giải cho mk nhé.
n=\(\frac{2}{3}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{97.99}\right)\)
n=\(\frac{2}{3}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\right)\)
n=\(\frac{2}{3}\left(1-\frac{1}{99}\right)\)
n=\(\frac{2}{3}\times\frac{98}{99}\)
n=\(\frac{196}{297}\)
Câu \(M=\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+...+\frac{2}{99.100}\)Bạn viết \(\frac{3}{99.100}=\frac{2}{99.100}\)mik sửa lại nhé.
\(M=\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+...+\frac{3}{99.100}\)
\(M=\frac{3-1}{1.3}+\frac{5-3}{3.5}+\frac{7-5}{5.7}+...+\frac{100-99}{99.100}\)
\(M=\frac{3}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(M=\frac{3}{2}.\left(\frac{1}{1}-\frac{1}{100}\right)\)
\(M=\frac{3}{2}.\frac{99}{100}=\frac{297}{200}\)
\(N=\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+....+\frac{3}{97.99}\)
\(N=\frac{3-1}{1.3}+\frac{5-3}{3.5}+\frac{7-5}{5.7}+....+\frac{99-97}{97.99}\)
\(N=\frac{3}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{97}-\frac{1}{99}\right)\)
\(N=\frac{3}{2}.\left(\frac{1}{1}-\frac{1}{99}\right)\)
\(\Rightarrow N=\frac{3}{2}.\frac{98}{99}=\frac{49}{33}\)
Ta thấy : \(\frac{297}{200}>\frac{49}{33}\Rightarrow M>N\)
Tính S=\(\frac{2}{1\cdot3}\)-\(\frac{4}{3\cdot5}\)+\(\frac{6}{5\cdot7}\)-\(\frac{8}{7\cdot9}\)+...-\(\frac{96}{95\cdot97}\)+\(\frac{98}{97\cdot99}\)
\(\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+\frac{1}{7\cdot9}+......+\frac{1}{97\cdot99}\)
đặt \(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{97.99}\) là A
A = \(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{97.99}\)
2A = 2 . (\(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{97.99}\))
2A = \(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{97.99}\)
2A = \(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\)
2A = \(\frac{1}{3}-\frac{1}{99}\)
2A = \(\frac{33}{99}-\frac{1}{99}\)
2A = \(\frac{32}{99}\)
A = \(\frac{32}{99}:2\)
A = \(\frac{32}{99}.\frac{1}{2}\)
A = \(\frac{32}{198}\)
A = \(\frac{16}{99}\)
HỌC TỐT