đặt \(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{97.99}\) là A
A = \(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{97.99}\)
2A = 2 . (\(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{97.99}\))
2A = \(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{97.99}\)
2A = \(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\)
2A = \(\frac{1}{3}-\frac{1}{99}\)
2A = \(\frac{33}{99}-\frac{1}{99}\)
2A = \(\frac{32}{99}\)
A = \(\frac{32}{99}:2\)
A = \(\frac{32}{99}.\frac{1}{2}\)
A = \(\frac{32}{198}\)
A = \(\frac{16}{99}\)
HỌC TỐT