a) giải hệ phương trình {x+y=3 {2x-3y=1 b) giải phương trình x^ -7x +10=0
1 1 5
(4x+7y=16
4x-3y =-24
* y 2
b)
1 1 3
Bài 1. Giải hệ phương trình: a)
x y 2
Bài 2. Giải các phương trình sau:
a) x- 10x + 21 = 0;
b) 5x – 17x + 12 = 0
c) 2x* - 7x? – 4 = 0;
16
d)
x-3 1-x
30
= 3
Bài 3. Cho phương trình x - 2(m + 1)x + 4m = 0 (1)
a) Chứng minh rằng phương trình (1) luôn có nghiệm với mọi m.
X x,
= 4
b) Tìm m để phương trình (1) có hai nghiêm phân biệt thỏa
X X,
Bài 4. Cho phương trình ấn x : x-4x+m-1%3D0
a) Giải phương trình (1) với m= -4
b) Với x1, X2 là nghiệm phương trình (1). Tìm giá trị của m, biết x1- X2 = 2
Bài 5. Một hình chữ nhật có chiều rộng bé hơn chiều dài là 4m, biết diện tích 320m?. Tính chiều
dài, chiều rộng hình chữ nhật.
Bài 6. Đội một gặt lúa trong 4 giờ thì đội hai đến gặt. Hai đội gặt trong 8 giờ thì xong công việc.
Hỏi nếu gặt một mình thì mỗi đội gặt trong bao lâu thì xong, biết nếu gặt một mình đội một gặt
nhiều thời gian hơn đội hai là 8 giờ.
(1)
Bài 7. Cho tam giác ABC có ba góc nhọn nối tiếp (O). Vẽ hai đường cao BE và CF.
a) Chứng minh tứ giác BFEC nội tiếp đường tròn.
b) Chứng minh AFE = ACB
c) Chứng minh AO1EF
Giải các hệ phương trình sau:
a, \(x+y=2\\\)
\(2x-3y=9\)
b, \(\dfrac{x}{y}=\dfrac{2}{3}\)
x+y-10=0
a, \(\left\{{}\begin{matrix}2x+2y=4\\2x-3y=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5y=-5\\x=2-y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-1\\x=3\end{matrix}\right.\)
b, \(\left\{{}\begin{matrix}\dfrac{x}{2}=\dfrac{y}{3}\\x+y=10\end{matrix}\right.\)Theo tc dãy tỉ số bằng nhau
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{x+y}{2+3}=\dfrac{10}{5}=2\Rightarrow x=4;y=6\)
a.\(\Leftrightarrow\left\{{}\begin{matrix}3x+3y=6\\2x-3y=9\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}5x=15\\2x-3y=9\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=3\\2.3-3y=9\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=-1\end{matrix}\right.\)
b.\(\Leftrightarrow\left\{{}\begin{matrix}3x=2y\\x+y-10=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}3x-2y=0\\x+y-10=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x-2y=0\\2x+2y=20\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}5x=20\\3x-2y=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=4\\3.4-2y=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=6\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x+y=2\\2x-3y=9\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}2x+2y=4\\2x-3y=9\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x+y=2\\-5y=5\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x-1=2\\y=-1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=3\\y=-1\end{matrix}\right.\)
b, ĐKXĐ:\(y\ne0\)
\(\left\{{}\begin{matrix}\dfrac{x}{y}=\dfrac{2}{3}\\x+y-10=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}\dfrac{10-y}{y}=\dfrac{2}{3}\\x=10-y\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}3\left(10-y\right)=2y\\x=10-y\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}30-3y=2y\\x=10-y\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}5y=30\\x=10-y\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y=6\\x=10-6\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y=6\\x=4\left(tm\right)\end{matrix}\right.\)
Bài 1 Cho hệ phương trình mx+4y=10-m và x+y=4
a, giải hệ phương trình khi m= căn 2
b, giải và biện luận hệ phương trình đã cho theo tham số m
c, trong trường hợp hệ có nghiệm duy nhất (x;y) tìm các giá trị của m để:
i, y-5x=-4. ii, x<1 và y>0
Bài 2: Cho hệ phương trình 2x+3y=m và 2x-3y=6 (m là tham số không âm)
a, giải hệ phương trình với m=3
b, tìm các giá trị của m để nghiệm (x;y) của hệ phương trình thoả mãn điều kiện x>0, y>0
a. Giải phương trình: $x^2 - 3x + 2 = 0$.
b. Giải hệ phương trình: $\left\{ \begin{aligned} & x + 3y = 3\\ & 4 x - 3 y = -18 \end{aligned}\right.$.
c. Rút gọn biểu thức: $A = \dfrac2{2+\sqrt7}+\dfrac{\sqrt{28}}2 - 2$.
d. Giải phương trình: $(x^2 - 2x)^2 + (x-1)^2 - 13 = 0.$
a) x^2 - 3x + 2 = 0
\(\Delta=b^2-4ac=\left(-3\right)^2-4.1.2=1\)
=> pt có 2 nghiệm pb
\(x_1=\frac{-\left(-3\right)+1}{2}=2\)
\(x_2=\frac{-\left(-3\right)-1}{2}=1\)
a) Dễ thấy phương trình có a + b + c = 0
nên pt đã cho có hai nghiệm phân biệt x1 = 1 ; x2 = c/a = 2
b) \(\hept{\begin{cases}x+3y=3\left(I\right)\\4x-3y=-18\left(II\right)\end{cases}}\)
Lấy (I) + (II) theo vế => 5x = -15 <=> x = -3
Thay x = -3 vào (I) => -3 + 3y = 3 => y = 2
Vậy pt có nghiệm ( x ; y ) = ( -3 ; 2 )
a, x1 = 1 , x2 = 2
b, x = -3 , y = 2
c, A = 1
d, x = -1 , x= 3
a, rút gọn biểu thức: A= \(\sqrt{12}-\sqrt{27}+\sqrt{4+2\sqrt{3}}\)
b, giải phương trình: x2-2x-4=0
c, giải hệ phương trình: \(\left\{{}\begin{matrix}2x-y=5\\x+3y=-1\end{matrix}\right.\)
????
xin lỗi nha !
mình mới học lớp 3
mà bài này khó nắm
a.A=\(\sqrt{12}-\sqrt{27}+\sqrt{4+2\sqrt{3}}\)\(=2\sqrt{3}-3\sqrt{3}+\sqrt{\left(\sqrt{3}+1\right)^2}\) \(=-\sqrt{3}+\sqrt{3}+1\) =1 b. \(x^2-2x-4=0\) Δ= \(\left(-2\right)^2-4\times1\times-4=20>0\) \(\Rightarrow\) phương trình có 2 nghiệm pb \(x1=\dfrac{2+\sqrt{20}}{2}=1+\sqrt{5}\) \(x2=\dfrac{2-\sqrt{20}}{2}=1-\sqrt{5}\) c. \(\left\{{}\begin{matrix}2x-y=5\\x+3y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x-y=5\\2x+6y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-7y=7\\2x-y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-1\\2x+1=5\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=-1\\x=2\end{matrix}\right.\)
giải các hệ phương trình
9x-6y=4 và 3(4x-3y)=-3x+y+7
3(x+1)+2y=-x và 5(x+y)=-3x+y-5
2(2x+3y)=3(2x-3y)+10 và 4x-3y=4(6y-2x)+3
A) Giải hệ phương trình : 3 x + y = 3 : 2 x - y = 7 B) giải phương trình : 7x²-2 x + 3 = 0 Bài 2 Cho (p) y = 2 x² (D) y = 3 x - 1 A) vẽ (p) B) tìm tọa độ giao điểm của (p) và (D) bằng phép tính
a) Ta có: \(\left\{{}\begin{matrix}3x+y=3\\2x-y=7\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}5x=10\\2x-y=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=2x-7=2\cdot2-7=-3\end{matrix}\right.\)
Vậy: Hệ phương trình có nghiệm duy nhất là (x,y)=(2;-3)
b) Ta có: \(7x^2-2x+3=0\)
a=7; b=-2; c=3
\(\Delta=\left(-2\right)^2-4\cdot7\cdot3=4-84=-80< 0\)
Suy ra: Phương trình vô nghiệm
Vậy: \(S=\varnothing\)
1) Giải hệ phương trình : \(\left\{{}\begin{matrix}2x+y=10\\5x-3y=3\end{matrix}\right.\)
2) Giải phương trình
a) 3x2 - 2x - 1 = 0
b) x4 - 20x2 + 4 = 0
1) \(\left\{{}\begin{matrix}2x+y=10\\5x-3y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}10x+5y=50\\10x-6y=6\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}11y=44\\2x+y=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=4\\x=3\end{matrix}\right.\)
Vậy hpt có nghiệm (x;y) = (3;4)
2)
a) 3x2 - 2x - 1 = 0
\(\Leftrightarrow3x^2-3x+x-1=0\)
\(\Leftrightarrow3x\left(x-1\right)+\left(x-1\right)=0\)
\(\Leftrightarrow\left(3x+1\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=1\end{matrix}\right.\)
Vậy pt có nghiệm x = 1 hoặc x = 3
b) Đặt x2 = t (t \(\ge\) 0)
Pt trở thành: t2 - 20t + 4 = 0
\(\Delta\) = (-20)2 - 4.1.4 = 400 - 16 = 384
=> pt có 2 nghiệm phân biệt t1 = \(\dfrac{20+8\sqrt{6}}{2}=10+4\sqrt{6}\)
t2 = \(\dfrac{20-8\sqrt{6}}{2}=10-4\sqrt{6}\)
=> x1 = \(\sqrt{10+4\sqrt{6}}=\sqrt{\left(2+\sqrt{6}\right)^2}=2+\sqrt{6}\)
x2 = \(2-\sqrt{6}\)