(1+1/2)(1+1/3)(1+1/4)….(1+1/x)=1008 1/2
9.2^x.(2^1005-2^1002+.....+2^3-1)=2^1008-1 *
A=2^1005-2^1002+...+2^3-1 2^3 .
A=2^2.(2^1005-2^1002+......+2^3-1) 8.
A=2^1008-2^1005+.....+2^6-2^3
A=2^1005-2^1002+.....+2^3-1 8.A+A=2^1008-1 9.
A=2^1008-1
Thay 9.a=2^1008-1 vào * ta có: 2^x.(2^1008-1)=2^1008-1
2^x=(2^1008-1):(2^1008-1)
2^x=1
2^x=2^0
x=0
vậy x=0
Lập đề bài cho bài toán này
x - 1/1+2 - 1/1+2+3 - 1/1+2+3+4 - ...... - 1/1+2+3+......+2015=1/1008
(1 + 1/2) x (1 + 1/3) x (1 + 1/4) x (1 + 1/x) = 1008 x 1/2
(3/2)*(4/3)*(5/4)*(x+1/x)=504
(5/2)*[x+(1/x)]=504
(X+1)/X=504:5/2=201,6
1+(1/X)=201,6
1/X=200,6
200,6X=1
X=5/1003
\(\frac{1}{2}-\left(\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+3+...+x}\right)=-\frac{503}{1008}\)tìm x
\(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2^{2016}-2}+\frac{1}{2^{2016}-1}>1008\)
\(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2^{2016}-2}+\frac{1}{2^{2016}-1}>1008\)
c1: \(\frac{1}{2}-\left(\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+3+...+x}\right)=-\frac{503}{1008}\)
A=1/1*2 + 1/3*4 + 1/5*6 + ... +1/2013*2014
B=1/1008*2014 + 1/1009*2013 + 1/1010*2012+ ... + 1/2014*1008
A=\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2013}-\frac{1}{2014}\)
B=1 + 1/2 + 1/3 + 1/4 +1/5 + .....+ 1/22016 - 2 + 1/22016 - 1 > 1008
Tìm x
(\(\left(1+\frac{1}{2}\right)x\left(1+\frac{1}{3}\right)x\left(1+\frac{1}{4}\right)x...x\left(1+\frac{1}{x}\right)=1008\frac{1}{2}\)
\(A=\frac{2015+2016+2017}{2014+2015+2016+2017+2018}x1000\)