Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Xem chi tiết
NGUYỄN THỊ THẢO VY
1 tháng 1 2022 lúc 15:53

bài này tui làm rồi mà quên rồi =)))

Khách vãng lai đã xóa
Yen Nhi
1 tháng 1 2022 lúc 21:34

Answer:

Mình nghĩ đề là  \(p^3+2\) mới đúng chứ nhỉ?

Ta nhận xét được: 

Mọi số nguyên tố lớn hơn 3 thì chia cho 3 đề có dạng: \(\orbr{\begin{cases}p=3k+1\\p=3k+2\end{cases}}\left(k\inℕ^∗\right)\)

\(\orbr{\begin{cases}p=3k+1\Leftrightarrow p^2+2=9k^2+6k+3⋮3\\p=3k+2\Leftrightarrow p^2+2=9k^2-6k+6⋮3\end{cases}}\)

Vì p là số nguyên tố nên \(p\ge2\) khi đó trong cả hai trường hợp thì \(p^2+2>3\) và \(⋮3\)

\(\Rightarrow p^2+2\) là hợp số

\(\Rightarrow p^2+2\) là số nguyên tố khi \(p=3\) (Lúc này \(p^2+2=11\) là số nguyên tố)

\(\Rightarrow p^3+2=27+2=29\) là số nguyên tố

Vậy nếu \(p\) và \(p^2+2\) là số nguyên tố thì \(p^3+2\) cũng là số nguyên tố.

Khách vãng lai đã xóa
Trung Nguyen
Xem chi tiết
ZerosOfGamer
2 tháng 4 2018 lúc 22:42

  zdvdz

Nhóc Cô Đơn
Xem chi tiết
Hoàng Như Anh
Xem chi tiết
an dang huy
29 tháng 7 2015 lúc 15:33

neu p khong chia het cho 3 thi pchia 3 du 1 suy ra p2 +8 chia het cho 3 (trai gia thiet p2 +8 nguyen to)

vay p phai chia het cho 3, ma p nguyen to nen p=3 . suy ra p2 +2=11 la so nguyen to

tuong tu, o cau b ta cung cm duoc p=3

Lại Phạm Quang Huy
Xem chi tiết
Phan Minh Sang
Xem chi tiết
Trần Minh Hưng
Xem chi tiết
Akai Haruma
9 tháng 1 2017 lúc 23:27

Lời giải:

-Nếu $p$ không chia hết cho $3\Rightarrow p\geq 2$

Ta biết rằng mọi số chính phương không chia hết cho $3$ thì chia $3$ dư $1$. Do đó $p^2+2\equiv 0\pmod 3$. Suy ra để $p^2+2$ là số nguyên tố thì $p^2+2=3\rightarrow p=1$ (vô lý)

Vậy $p$ thỏa mãn đề bài phải chia hết cho $3$, hay $p=3$. Thử vào $p^2+2=11,p^3+2=29\in\mathbb{P}$ nên ta có đpcm

Mikage Nanami
Xem chi tiết
Ngô Tuấn Vũ
Xem chi tiết
Trần Thị Loan
6 tháng 11 2015 lúc 17:18

p là số nguyên tố lớn hơn 3 => p có dạng 3k + 1 hoặc 3k + 2 ( k thuộc N*)

+) Nếu = 3k + 1 => p+2 = 3k + 3 = 3(k + 1) là hợp số => Loại

Vậy p = 3k + 2. Vì p nguyên tố nên k lẻ (nếu k chẵn thì 3k + 2 chẵn)

=> p + (p + 2) = 3k + 2 + (3k + 2 + 2) = 6k + 6 = 6.(k + 1) mà k + 1 chia hết cho 2 do k lẻ 

Nên 6(k + 1) chia hết cho 6.2 = 12

Vậy p + (p + 2) chia hết cho 12