Tìm số nguyên tố a sao cho \(\left(\frac{1}{b}\right)^2=\frac{9}{-9+225a}+\frac{\left(1+2+3+...+n\right)^2-\left(1^3+2^3+3^3+...+n^3\right)}{2500}\)và b cũng là số nguyên tố.
1) Tính:\(A=3-\frac{1}{2}-\frac{1}{6}-\frac{1}{12}-\frac{1}{20}-\frac{1}{30}-\frac{1}{42}-\frac{1}{56}\)
2) Tìm tất cả các số nguyên tố x,y sao cho x2 - 6y2 - 1 = 0
3) Cho \(n\in N\)biết n-10; n+4. n+60 đều là số nguyên tố. CMR: n+90 là số nguyên tố
4) Tính nhanh
\(A=\left(\frac{7}{9}+1\right)\left(\frac{7}{20}+1\right)\left(\frac{7}{33}+1\right).....\left(\frac{7}{10800}+1\right)\)
Các bn giúp mk nhanh lên nhé
\(A=3-\frac{1}{2}-\frac{1}{6}-\frac{1}{12}-\frac{1}{20}-\frac{1}{30}-\frac{1}{42}-\frac{1}{56}\)
\(A=3-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}\right)\)
\(A=3-\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}\right)\)
\(A=3-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}\right)\)
\(A=3-\left(1-\frac{1}{8}\right)\)
\(A=3-\frac{5}{8}\)
\(A=\frac{19}{8}\)
Tính B=\(\frac{2.1+1}{\left[1.\left(1+1\right)^2\right]}+\frac{2.2+1}{\left[2.\left(2+1\right)^2\right]}+\frac{2.3+1}{\left[3.\left(3+1\right)^2\right]}+...+\frac{2.99+1}{\left[99.\left(99+1\right)^2\right]}\).
tìm số nguyên a sao cho \(a^4+4\)là số nguyên tố
1. Tìm các số nguyên tố a,b,c sao cho a.b.c=3(a+b+c)
2. Tìm số nguyên tố p sao cho 2p+1 là lập phương của 1 số nguyên tố
3. Cho a,b,c >0 . Cm \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Phần nguyên của số hữu tỉ x được kí hiệu [x] là số nguyên lớn nhất không vượt quá x. Cho:
A=\(\left[\frac{n}{2}\right]+\left[\frac{n+1}{2}\right]\)và B=\(\left[\frac{n}{3}\right]+\left[\frac{n+1}{3}\right]+\left[\frac{n+2}{3}\right]\) với \(n\in N\)
Tìm n để: a, A chia hết cho 2
b, B chia hết cho 3
Xét các dạng của n trong phép chia cho 2 và 3
2k , 2k+1
3p, 3p+1. 3p+2
Câu 1. Giải phương trình: \(\left(x^2+x+1\right)\left(x^4+2x^3+7x^2+26x+37\right)=5\left(x+3\right)^3\)
Câu 2. Cho a, b, c là ba nghiệm của đa thức \(f\left(x\right)=x^3-3x+1\). Tính giá trị của biểu thức \(A=\frac{1+2a}{1+a}+\frac{1+2b}{1+b}+\frac{1+2c}{1+c}\)
Câu 3. a) Tìm số tự nhiên n sao cho \(\left(n^2-8\right)^2+36\)là số nguyên tố
b) Tìm số nguyên x, y thỏa mãn \(x^2y^2-x^2-8y^2=2xy\)
\(\left(n^2-8\right)^2+36\)
\(=n^4-16n^2+64+36\)
\(=\left(n^4+20n^2+100\right)-36n^2\)
\(=\left(n^2+10\right)^2-\left(6n\right)^2\)
\(=\left(n^2+10-6n\right)\left(n^2+10+6n\right)\)
Để n là số nguyên tố thì \(\orbr{\begin{cases}n^2+10-6n=1\\n^2+10+6n=1\end{cases}}\)
Mà do \(n\in N\Rightarrow n^2+10-6n=1\)
\(\Leftrightarrow n^2-6n+9=0\)
\(\Leftrightarrow\left(n-3\right)^2=0\)
\(\Leftrightarrow n-3=0\)
\(\Leftrightarrow n=3\)
Vậy n=3.
Tìm số nguyên tố a biết
a) 2a +\(\frac{8}{8}-\frac{a}{5}\)là 1 số nguyên
b) \(\frac{2a+9}{a+3}_{ }+\frac{5a+16}{a+3}-\frac{39}{a+3}\)lafg 1 số nguyên
bài 2
tìm số nguyên x biết \(\frac{1}{2}-\left(\frac{1}{3}-\frac{3}{4}\right)\le x\le\frac{1}{24}-\left(\frac{1}{8}-\frac{1}{3}\right)\)
Bài 1: a, Tìm số nguyên a để tích hai phân số \(\frac{-19}{5}\) và \(\frac{a}{a-1}\)là một số nguyên.
b, Tìm số nguyên a để \(\frac{5}{4}\): \(\frac{a}{a+1}\)được thương là một số nguyên.
c,Tìm phân số dương \(\frac{a}{b}\)nhỏ nhất sao cho khi chia \(\frac{a}{b}cho\frac{7}{9}\)hoặc khi chia cho \(\frac{5}{12}\)được mỗi thương là một số tự nhiên
Bài 2:a,Với giá trị nào của x thì ta có:
1,A= \(\left(x-\frac{3}{4}\right)\left(x+\frac{1}{2}\right)\)là số dương 2,B=\(\frac{x-0,5}{x+1}\)là số âm.
b,Cho phân số \(\frac{a}{b}\left(b\ne0\right)\).Tìm phân số \(\frac{c}{d}\left(c\ne0,d\ne0\right)\)sao cho \(\frac{a}{b}:\frac{c}{d}=\frac{a}{b}.\frac{c}{d}\)
c, Tìm các cặp số nguyên (x,y) để: \(B=\frac{1}{x-y}:\frac{x+2}{2\left(x-y\right)}\)là số nguyên.
Bài 3: a, Tính : A=\(\left(-2\right)\left(-1\frac{1}{2}\right)\left(-1\frac{1}{3}\right)\left(-1\frac{1}{4}\right)...\left(-1\frac{1}{n}\right)\left(n\in N,n\ne0\right)\)
B=\(\frac{4\frac{1}{4}}{11\frac{1}{3}.5\frac{1}{4}}\) C= \(\frac{-1:1\frac{1}{15}}{3\frac{1}{8}:6\frac{2}{3}}:\frac{4\frac{7}{8}:13}{5:1\frac{7}{8}}\) D=\(-\frac{7}{4}\left(\frac{33}{12}+\frac{3333}{2020}+\frac{333333}{303030}+\frac{33333333}{42424242}\right)\)
E=\(\frac{1}{2}:\left(-1\frac{1}{2}\right):1\frac{1}{3}:\left(-1\frac{1}{4}\right):1\frac{1}{5}:\left(-1\frac{1}{6}\right):...:\left(-1\frac{1}{100}\right)\) F=\(4+\frac{1}{1+\frac{1}{1+\frac{2}{1+\frac{3}{4}}}}\)
nhiều thế ??????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????
Bài 1: CMR
a) A = \(\frac{\left(n+1\right).\left(n+2\right)....\left(2n-1\right).\left(2n\right)}{2^n}\) là số nguyên.
b) B = \(\frac{3.\left(n+1\right).\left(n +2\right)...\left(3n-1\right).3n}{3^n}\)là số nguyên.
bài 1
a) cho B = \(\frac{1}{2}+\frac{3}{2^2}+\frac{7}{2^3}+...+\frac{2^{100}-1}{2^{100}}\). Chứng minh B >99
b)chứng minh \(\left(n+1\right)\left(n+2\right)\left(n+3\right)...\left(2n\right)⋮2^n\)với n nguyên dương
c) cho đa thức f(x) = ax^3 + bx^3 + cx + d . với f(0) và f(1) là các số lẻ. CMR f(x) không có nghiệm là số nguyên.