Có tồn tại hay không số nguyên dương k thỏa mãn \(2^k+3^k\) là số chính phương?
Bài 8. Cho số nguyên dương n. Tồn tại hay không số nguyên dương d thỏa mãn: d là ước của 3n^2 và n^2 +d là số chính phương. Bài 9. Chứng minh rằng không tồn tại hai số nguyên dương x, y thỏa mãn x^2 +y+1 và y^2 +4x+3 đều là số chính phương.
Ai đó giúp mình đi mòaa🤤🤤🤤
Có tồn tại số nguyên dương k nào đó để 2^k+3^k là số chính phương
Đề 1:
Câu 2.
a) Hỏi có tồn tại không số k nguyên dương để 160...081 ( k số 0) là số chính phương? giải thích.
chứng minh tồn tại không số nguyên dương n thỏa mãn (n+1)(n+2)(N+3) là số chính phương
Áp dụng tính chất sau \(\left(a-1\right)\left(a+1\right)=a^2-1\)(\(a\in Z\)) ta được:
\(\left(n+1\right)\left(n+2\right)\left(n+3\right)=\left(n+2\right).\left[\left(n+1\right)\left(n+3\right)\right]=\left(n+2\right).\left[\left(n+2\right)^2-1\right]\)
Do \(n+2\) và \(\left(n+2\right)^2-1\) là hai số nguyên tố cùng nhau nên nếu \(\left(n+1\right)\left(n+2\right)\left(n+3\right)\) là số chính phương thì \(n+2\) và \(\left(n+2\right)^2-1\) cũng là các số chính phương
Do n là các số nguyên dương nên \(n+2\ge2\)
Với \(n+2\ge2\Rightarrow\left(n+2\right)^2-1\) không là số chính phương
\(\Rightarrow\left(n+1\right)\left(n+2\right)\left(n+3\right)\) không là số chính phương
Có tồn tại hay không một số k sao cho
\(2^k+3^k\)
Là số chính phương .
Gỉa sử tồn tại k để 2k + 3k là số chính phương
Nếu \(k=4t\) ( t thuộc N*)
thì: \(2^k+3^k=2^{4t}+3^{4t}=16^t+81^t\) có tận cùng là 7 (mâu thuẫn, do số chính phương ko tận cùng = 7)
Nếu \(k=4t+1\) ( t thuộc N*)
thì \(2^k+3^k=2^{4t+1}+3^{4t+1}=16^t.2+81^t.3\) chia 3 dư 2 (mâu thuẫn, do số chính phương chia 3 chỉ có thể dư 0 or 1)
Nếu \(k=4t+2\) ( t thuộc N*)
thì \(2^k+3^k=2^{4t+2}+3^{4t+2}=16^t.4+81^t.9\) có tận cùng là 3 (mâu thuẫn,.....)
Nếu \(k=4t+3\) ( t thuộc N*)
thì \(2^k+3^k=2^{4t+3}+3^{4t+3}=16^t.8+81^t.27\) chia 3 dư 2 (mâu thuẫn,....)
Vậy không tồn tại k để 2k + 3k là số chính phương
Em mới hc lớp 7 ko biết đúng ko
Giả sử: \(2^k+3^k=n^2\)(tức là số chính phương)
Ta có:
\(2^k\equiv2\)(mod 0) và \(3^k\equiv3\)(mod 0)
Suy ra: \(2^k+3^k\equiv5\)(mod 0)
Suy ra: \(n^2\equiv5\)(mod 0)
Mà 5 chia 3 dư 2
Suy ra: \(n^2\)chia 3 dư 2
Sử dụng bổ đề số chính phương chia 3 không thể dư 2
Suy ra: Phản chứng
Vậy không tồn tại ........
Đề 1:
Câu 2.
a) Hỏi có tồn tại không số k nguyên dương để 160...081 ( k số 0) là số chính phương? giải thích.
Theo đề bài, ta có:
\(k^2=160...081\)
Để \(k^2\) có chữ số tận cùng là 1 như đề bài cho thì \(k\) phải có chữ số tận cùng là 1(1) hoặc 9(2).
Áp dụng phép đặt tính với (1) và (2) ta tìm được \(k=...009\)
Lại có : \(k^2=160...081=160...000+81\in\left\{4000^2+81,40000^2+81,400000^2+81,...\right\}\)
\(\left\{4000^2+81,40000^2+81,400000^2+81,...\right\}< \left\{5000^2,50000^2,500000^2,...\right\}\Rightarrow k\in\left\{4009,40009,400009,...\right\}\)
Thử lại : \(4009^2=16072081\) (đúng)
\(40009^2=1600720081\) (đúng)
\(...\)
Vậy có tồn tại số \(k\) nguyên dương (\(k\in\left\{4009,40009,400009,...\right\}\)) để \(160...081\) là số chính phương.
Tìm tất cả các số nguyên dương k thỏa mãn k và 3k + 1 đều là các số chính phương.
Sau khi thử bằng pascal thì em thấy bài này hình như có vô số nghiệm (Chắc là sai đề). Nhưng nếu ai tìm được công thức tổng quát của k thì hay biết mấy.
1) Tồn tại hay không số nguyên x thỏa mãn 202x + 122x + 20152x là một số chính phương.
2) Cho n là một số nguyên dương và n số nguyên dương a1 , a2 , a3 , …, an có tổng bằng 2n - 1. Chứng minh rằng tồn tại một số số trong n số đã cho có tổng bằng n.
20^2x có tận cùng là 0
12^2x=144^x;2012^2x=4048144^x
xét x=2k+1 thì ta có: 144^(2k+1)=144^2k*144=20726^k*144 có tận cùng là 4
4048144^(2k+1)=(...6)^2*4048144 có tận cùng là 4
suy ra số đã cho có tận cùng là 8 không phải là số chính phương (1)
xét x=2k thì ta có:144^2k=20736^k có tận cùng là 6
4948144^2k=(...6)^k có tận cùng là 6
suy ra số đã cho có tận cùng là 2 không phải là số chính phương (2)
từ(1) và (2) suy ra không tồn tại số x
Đinh Tuấn việt chép mạng thề luôn!
nếu x = 2k thì 2015^2x = 4060225^x chứ không phải là 4048144^x nha
Nếu mún bt hãy xem dòng thứ 2 của lời giải của bạn ấy có ghi là
2012^2x = 4048144^x
Nhưng đề bài lại nói là 2015^2x cơ mà ??
Cho số nguyên k lớn hơn 32. Hỏi tồn tại hay không số tự nhiên k thỏa mãn \(a^{40}< k< a^{41}\)mà k có ít nhất 61 chữ số 0 ở tận cùng
Cần rất gấp nha mn