Giải phương trình:
a, (4 - x)5 + (x - 2)5 = 32
b, (x - 1)5 + (x - 3)5 = 242(x + 1)
Giải các phương trình sau:
a) \(\left(4-x\right)^5+\left(x-2\right)^5=32\)
b) \(\left(x-1\right)^5+\left(x+3\right)^5=242\left(x+1\right)\)
Mk chỉ làm đc câu a) thôi còn câu b mk cũng đang hỏi.
Đặt \(4-x=a\); \(x-2=b\) \(\Rightarrow\) \(a+b=2\)
\(\Leftrightarrow\)\(\left(a^3+b^3\right)\left(a^2+b^2\right)-a^2b^2\left(a+b\right)=32\)
\(\Leftrightarrow\)\(\left[\left(a+b\right)^3-3ab\left(a+b\right)\right]\left[\left(a+b\right)^2-2ab\right]-a^2b^2\left(a+b\right)=32\)
thay \(a+b=2\) ta có:
\(\left(8-6ab\right)\left(4-2ab\right)-2\left(ab\right)^2=32\)
\(\Leftrightarrow\) \(32-40ab+10\left(ab\right)^2=32\)
\(\Leftrightarrow\)\(10ab\left(-4+ab\right)+32-32=0\)
\(\Leftrightarrow\)\(ab\left(ab-4\right)=0\)
\(\Leftrightarrow\)\(\left[{}\begin{matrix}ab=0\\ab-4=0\end{matrix}\right.\)
Với \(ab=0\) thì \(\left(4-x\right)\left(x-2\right)=0\)
\(\Leftrightarrow\)\(\left[{}\begin{matrix}4-x=0\\x-2=0\end{matrix}\right.\) \(\Rightarrow\) \(\left[{}\begin{matrix}x=4\\x=2\end{matrix}\right.\)
Với \(ab-4=0\) thì \(\left(4-x\right)\left(x-2\right)-4=0\)
\(\Leftrightarrow\)\(6x-8-x^2-4=0\)
\(\Leftrightarrow\)\(6x-12-x^2=0\)
\(\Leftrightarrow\)\(-\left(x^2-6x+12\right)=0\)
\(\Leftrightarrow\)\(-\left(x^2-6x+9+3\right)=0\)
\(\Leftrightarrow\)\(-\left(x-3\right)^2-3=0\) ( vô lí )
Vậy pt có tập nghiệm \(S=\left\{2;4\right\}\)
giải phương trình
A = ( x - 1)^5 + (x + 3)^5 = 242(x + 1)
Bài 1. Giải các phương trình sau :
a) 7x - 35 = 0 b) 4x - x - 18 = 0
c) x - 6 = 8 - x d) 48 - 5x = 39 - 2x
Bài 2. Giải các phương trình sau :
a) 5x - 8 = 4x - 5 b) 4 - (x - 5) = 5(x - 3x)
c) 32 - 4(0,5y - 5) = 3y + 2 d) 2,5(y - 1) = 2,5y
Bài 3. Giải các phương trình sau :
a) \(\frac{3x-7}{5}=\frac{2x-1}{3}\)
b) \(\frac{4x-7}{12}- x=\frac{3x}{8}\)
Bài 4. Giải các phương trình sau :
a) \(\frac{5x-8}{3}=\frac{1-3x}{2}\)
b) \(\frac{x-5}{6}-\frac{x-9}{4}=\frac{5x-3}{8}+2\)
Bài 5. Giải các phương trình sau :
a) 6(x - 7) = 5(x + 2) + x b) 5x - 8 = 2(x - 4) + 3
a) 7x - 35 = 0
<=> 7x = 0 + 35
<=> 7x = 35
<=> x = 5
b) 4x - x - 18 = 0
<=> 3x - 18 = 0
<=> 3x = 0 + 18
<=> 3x = 18
<=> x = 5
c) x - 6 = 8 - x
<=> x - 6 + x = 8
<=> 2x - 6 = 8
<=> 2x = 8 + 6
<=> 2x = 14
<=> x = 7
d) 48 - 5x = 39 - 2x
<=> 48 - 5x + 2x = 39
<=> 48 - 3x = 39
<=> -3x = 39 - 48
<=> -3x = -9
<=> x = 3
có bị viết nhầm thì thông cảm nha!
la`thu'hai nga`y 19 nhe
1.giải các phương trình sau:
a, 3(2x+1)/4 - 5x+3/6 = 2x-1/3 - 3-x/4
b, 19/4 - 2(3x-5)/5 = 3-2x/10 - 3x-1/4
c, x-2*3/2+3 + x-3*5/3+5 + x-5*2/5+2 = 10
d, x-3/5*7 + x-5/3*7 + x-7/3*5 = 2(1/3 + 1/5 + 1/7)
2. giải các phương trình:
a, x-1/9 + x-2/8 = x-3/7 + x-4/6
b, (1/1*2 + 1/2*3 + 1/3*4 + ... + 1/9*10) (x-1) + 1/10x = x- 9/10
Câu 1 :
a, \(\frac{3\left(2x+1\right)}{4}-\frac{5x+3}{6}=\frac{2x-1}{3}-\frac{3-x}{4}\)
\(\Leftrightarrow\frac{6x+3}{4}+\frac{3-x}{4}=\frac{2x-1}{3}+\frac{5x+3}{6}\)
\(\Leftrightarrow\frac{5x+6}{4}=\frac{9x+1}{6}\Leftrightarrow\frac{30x+36}{24}=\frac{36x+4}{24}\)
Khử mẫu : \(30x+36=36x+4\Leftrightarrow-6x=-32\Leftrightarrow x=\frac{32}{6}=\frac{16}{3}\)
tương tự
\(\frac{19}{4}-\frac{2\left(3x-5\right)}{5}=\frac{3-2x}{10}-\frac{3x-1}{4}\)
\(< =>\frac{19.5}{20}-\frac{8\left(3x-5\right)}{20}=\frac{2\left(3-2x\right)}{20}-\frac{5\left(3x-1\right)}{20}\)
\(< =>95-24x+40=6-4x-15x+5\)
\(< =>-24x+135=-19x+11\)
\(< =>5x=135-11=124\)
\(< =>x=\frac{124}{5}\)
\(\frac{\left(x-2\right).3}{2}+3+\frac{\left(x-3\right).5}{3}+5+\frac{\left(x-5\right).2}{5}+2=10\)
\(< =>\frac{\left(x-2\right).3.15}{30}+\frac{\left(x-3\right).5.10}{30}+\frac{\left(x-5\right).2.6}{30}=10-2-3-5\)
\(< =>\frac{\left(x-2\right).45+\left(x-3\right).50+\left(x-5\right).12}{30}=0\)
\(< =>45x-90+50x-150+12x-60=0\)
\(< =>107x-300=0< =>x=\frac{300}{107}\)
Bài 1:Giải phương trình và bất phương trình
a) 9/ x2-4 =x-1/x+2 + 3/x-2
b) 1/x-5 - 3/x2 -6x+5= 5/x-1
a, \(\frac{9}{x^2-4}=\frac{x-1}{x+2}+\frac{3}{x-2}\left(ĐKXĐ:x\ne\pm2\right)\)
\(\frac{9}{\left(x-2\right)\left(x+2\right)}=\frac{x-1}{x+2}+\frac{3}{x-2}\)
\(\frac{9}{\left(x-2\right)\left(x+2\right)}=\frac{\left(x-1\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}+\frac{3\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\)
Khử mẫu : \(9=\left(x-1\right)\left(x-2\right)+3\left(x+2\right)\)
Đến đây nhường bn, rất dễ =))
b, \(\frac{1}{x-5}-\frac{3}{x^2-6x+5}=\frac{5}{x-1}\)
\(\frac{1}{x-5}-\frac{3}{\left(x-5\right)\left(x-1\right)}=\frac{5}{\left(x-1\right)}\)
\(\frac{\left(x-1\right)}{x-5}-\frac{3}{\left(x-5\right)\left(x-1\right)}=\frac{5\left(x-5\right)}{\left(x-1\right)\left(x-5\right)}\)
Khử mẫu \(x-1-3=5\left(x-5\right)\)
Tự lm nốt mà cho mk hỏi, đề bài có bpt mà bpt đâu
\(\frac{9}{x^2-4}=\frac{x-1}{x+2}+\frac{3}{x-2}\left(ĐKXĐ:x\ne2;-2\right)\)
\(< =>\frac{9}{x^2-2^2}=\frac{\left(x-1\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}+\frac{3\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\)
\(< =>\frac{9}{\left(x-2\right)\left(x+2\right)}=\frac{\left(x-1\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}+\frac{3x+6}{\left(x+2\right)\left(x-2\right)}\)
\(< =>9=x^2-2x-x+2+3x+6\)
\(< =>x^2-\left(2x+x-3x\right)+\left(2+6-9\right)=0\)
\(< =>x^2-2=0\)\(< =>x^2=2\)
\(< =>x=\pm\sqrt{2}\left(tmđk\right)\)
Vậy tập nghiệm của phương trình trên là \(\pm\sqrt{2}\)
\(\frac{1}{x-5}-\frac{3}{x^2-6x+5}=\frac{5}{x-1}\left(ĐKXĐ:x\ne1;5\right)\)
\(< =>\frac{1}{x-5}-\frac{3}{x^2-x-5x+5}=\frac{5}{x-1}\)
\(< =>\frac{1}{x-5}-\frac{3}{x\left(x-1\right)-5\left(x-1\right)}=\frac{5}{x-1}\)
\(< =>\frac{1}{x-5}-\frac{3}{\left(x-5\right)\left(x-1\right)}=\frac{5}{x-1}\)
\(< =>\frac{x-1}{\left(x-5\right)\left(x-1\right)}-\frac{3}{\left(x-5\right)\left(x-1\right)}=\frac{5x-25}{\left(x-1\right)\left(x-5\right)}\)
\(< =>x-1-3=5x-25\)
\(< =>5x-25-x+4=0\)
\(< =>4x-21=0\)
\(< =>x=\frac{21}{4}=7\left(tmđkxđ\right)\)
Giải phương trình:
1) (3x-1)^2-5(2x+1)^2+96x-3)(2x+1)=(x-1)^2
2) (x+2)^3-(x-2)^3=12(x-1)-8
3) x-1/4-5-2x/9=3x-2/3
4) 25x-655/95-5(x-12)/209=[89-3x-2(x-13)/5]/11
5) 29-x/21+27-x/23+25-x/25+23-x/27=-4
6) x-69/30+x-67/32=x-63/36+x-61/38
7)x+117/19+x+4/28+x+3/57=0
8) 59-x/41+57-x/43+2=x-55?45+x-53/47-2
9) Cho phương trình: mx+x-m^2=2x-2 (x là ẩn). Tìm m để phương trình:
a) Có nghiệm duy nhất
b) Vô số nghiệm
c) Vô nghiệm
Giải phương trình: \(\left(x-1\right)^5+\left(x+3\right)^5=242\left(x+1\right)\)
Giải phương trình sau: \(\left(x-1\right)^5+\left(x+3\right)^5=242\left(x+1\right)\))
Giair phương trình:
1) \(\sqrt[5]{32-x^2}-\sqrt[5]{1-x^2}=4\)
2) \(\sqrt{x}+\sqrt[4]{20-x}=4\)
3) \(x^3+1=2\sqrt{3x-1}\)
4) \(\sqrt[3]{x-1}+3=\sqrt[4]{82-x}\)
5)
\(a.\left(x+3\sqrt{x}+2\right)\left(x+9\sqrt{x}+18\right)=168x\)
\(b.\sqrt{5x^2+14x+9}-\sqrt{x^2-x-20}=5\sqrt{x+1}\)
a) ĐKXĐ: \(x\ge0\)
Ta có: \(\left(x+3\sqrt{x}+2\right)\left(x+9\sqrt{x}+18\right)=168x\)
\(\Leftrightarrow\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)\left(\sqrt{x}+3\right)\left(\sqrt{x}+6\right)=168x\)
\(\Leftrightarrow\left(x+6\right)^2+12\sqrt{x}\left(x+6\right)-133=0\)
\(\Leftrightarrow\left(x+6\right)^2+19\sqrt{x}\left(x+6\right)-7\sqrt{x}\left(x+6\right)-133=0\)
\(\Leftrightarrow\left(x+6\right)\left(x+19\sqrt{x}+6\right)-7\sqrt{x}\left(x+19\sqrt{x}+6\right)=0\)
\(\Leftrightarrow\left(x-7\sqrt{x}+6\right)=0\)
\(\Leftrightarrow\left(\sqrt{x}-1\right)\left(\sqrt{x}-6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=36\end{matrix}\right.\)