Tìm các cặp số nguyên (x, y) thỏa mãn x-3y+2xy=4
a)tìm các cặp số nguyên dương x,y thỏa mãn: 2x^2+3y^2-5xy-x+3y-4=0
b) các số x,y,z thỏa mãn điều kiện x^2+y^2+z^2=2014. tìm giá trị nhỏ nhất của M=2xy-yz-xz
Bài 1: Tìm các cặp số nguyên x;y thỏa mãn 2xy+2x-3y+5=0
tìm cặp số nguyên x,y thỏa mãn 7x+2xy-3y=7
=>7x+y(2x-3)=7
=>7x-10,5+y(2x-3)=7-10,5
=>(x-1,5)(2y+7)=-3,5
=>(2x-3)(2y+7)=-7
=>\(\left(2x-3;2y+7\right)\in\left\{\left(1;-7\right);\left(-7;1\right);\left(-1;7\right);\left(7;-1\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(2;-7\right);\left(-2;-3\right);\left(1;0\right);\left(5;-4\right)\right\}\)
tìm cặp số nguyên x, y thỏa mãn x^2 -2xy+3y^2 +8x-8y+13=0
\(\Leftrightarrow\left(x^2-2xy+y^2\right)+8\left(x-y\right)+16=3-2y^2\)
\(\Leftrightarrow\left(x-y\right)^2+8\left(x-y\right)+16=3-2y^2\)
\(\Leftrightarrow\left(x-y+4\right)^2=3-2y^2\) (1)
Do \(\left(x-y+4\right)^2\ge0;\forall x,y\)
\(\Rightarrow3-2y^2\ge0\Rightarrow y^2\le\dfrac{3}{2}\Rightarrow\left[{}\begin{matrix}y^2=0\\y^2=1\end{matrix}\right.\)
\(\Rightarrow y=\left\{-1;0;1\right\}\)
- Với \(y=-1\) thay vào (1):
\(\left(x+5\right)^2=1\Rightarrow\left[{}\begin{matrix}x+5=1\\x+5=-1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-4\\x=-6\end{matrix}\right.\)
- Với \(y=1\) thay vào (1):
\(\Rightarrow\left(x+3\right)^2=1\Rightarrow\left[{}\begin{matrix}x+3=1\\x+3=-1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-2\\x=-4\end{matrix}\right.\)
- Với \(y=0\)
\(\Rightarrow\left(x+4\right)^2=3\) (ko có nghiệm nguyên do 3 ko phải SCP)
Tìm tất cả các cặp số nguyên (x,y) thỏa mãn\(2y^2+2xy+x+3y-13=0\)
\(2y^2+2xy+x+3y-13=0\)
\(\Leftrightarrow2y\left(y+x\right)+x+y+2y=13\)
\(\Leftrightarrow\left(x+y\right)\left(2y+1\right)+2y+1=14\)
\(\Leftrightarrow\left(2y+1\right)\left(x+y+1\right)=14\)
Rồi bạn làm từng cặp ra nhé!
Tìm tất cả các cặp số nguyên ( x,y ) thỏa mãn
\(x^2+2y^2+2xy+3y-4=0\)
Giups em vs ạ
x2 + 2y2 + 2xy + 3y - 4 = 0
<=> 4x2 + 8y2 + 8xy + 12y - 16 = 0
<=> (4x2 + 8xy + 4y2) + (4y2 + 12y + 9) = 25
<=> (2x+ 2y)2 + (2y + 3)2 = 25 = 0 + 52 = 32 + 42
Do x;y là số nguyên và 2y + 3 là số lẻ => (2y + 3)2 thuộc {52; 32}
Xét các TH xảy ra:
+)\(\hept{\begin{cases}2x+2y=0\\2y+3=5\end{cases}}\) <=> \(\hept{\begin{cases}x+y=0\\y=1\end{cases}}\) <=> \(\hept{\begin{cases}x=-1\\y=0\end{cases}}\)
+) \(\hept{\begin{cases}2x+2y=0\\2y+3=-5\end{cases}}\)
+) \(\hept{\begin{cases}2x+2y=4\\2y+3=3\end{cases}}\)
+) \(\hept{\begin{cases}2x+2y=-4\\2y+3=-3\end{cases}}\)
+) \(\hept{\begin{cases}2x+2y=4\\2y+3=-3\end{cases}}\)
+) \(\hept{\begin{cases}2x+2y=-4\\2y+3=3\end{cases}}\)
(Tự tính x;y)
Tìm các cặp số nguyên (x;y) thỏa mãn: x^4-y^4=3y^2 1
tìm tất cả các cặp số nguyên x,y thỏa mãn : x+2xy-y=4
Theo đề bài, ta có: \(x+2xy-y=4\)
\(\Rightarrow x\left(1+2y\right)-y=4\)
\(\Rightarrow2x\left(2y+1\right)-2y=8\)
\(\Rightarrow2x\left(2y+1\right)-\left(2y+1\right)=7\)
\(\Rightarrow\left(2y+1\right)\left(2x-1\right)=7\)
Vì \(x,y\in Z\Rightarrow2x-1;2y+1\inƯ\left(7\right)=\left\{\mp1;\mp7\right\}\)
Ta có bảng sau:
2x-1 | 1 | -1 | 7 | -7 |
2y+1 | 7 | -7 | 1 | -1 |
x | 1 | 0 | 4 | -3 |
y | 3 | -4 | 0 | -1 |
Vậy \(\left(x;y\right)\in\left\{\left(1;3\right),\left(0;-4\right),\left(4;0\right),\left(-3;-1\right)\right\}\)
\(x+2xy-y=4\)
\(\Rightarrow2x+2xy-2y=4\)
\(\Rightarrow2x+2y\left(x-1\right)=4\)
\(\Rightarrow2\left[x+y\left(x-1\right)\right]=4\)
\(\Rightarrow x+y\left(x-1\right)=2\)
\(\Rightarrow\left(x-1\right)+y\left(x-1\right)=1\)
\(\Rightarrow\left(x-1\right).\left(1+y\right)=1\)
\(\text{ Bài tớ nhầm ròi }\)
Tìm tất cả các cặp số nguyên (x,y) thỏa mãn 2xy+4x+y=4