giúp mình với
Chứng minh nếu C = 1/5^2 + 1/6^2 + 1/7^2 +...+ 1/100^2 thì 1/6 < C < 1/4
mấy bạn ơi giúp mình câu này với
chứng minh rằng: \(\dfrac{1}{2^2}+\dfrac{1}{4^2}+\dfrac{1}{6^2}+...+\dfrac{1}{4010^2}< \dfrac{1}{2}\)
Chứng minh rằng : Nếu A = 1/5^2 + 1/6^2 + 1/7^2 + ... + 1/100^2 thì 1/6 < A < 1/4
Giúp mình với ạ ! mình đang cần gấp
Rút gọn biểu thức
a) A= 1 - 2 + 3 - 4 + 5 - 6 + 7 - 8 +.....+ 99 - 100
b)B= 1 + 3 - 5 - 7 + 9 + 11 - .... - 397 - 399
c)C=1 - 2 - 3 + 4 + 5 - 6 - 7 + ....... + 97 - 98 - 99 + 100
d)D= 2^2024 - 2^2023 -......- 1
\(A=1-2+3-4+5-6+7-8+...+99-100\)
\(A=\left(-1\right)+\left(-1\right)+\left(-1\right)+\left(-1\right)+...+\left(-1\right)\)
\(A=\left(-1\right).50\)
\(A=-50\)
\(B=1+3-5-7+9+11-...-397-399\)
\(B=1-2+2-2+2-...+2-2-399\)
\(B=1-399\)
\(B=-398\)
\(C=1-2-3+4+5-6-7+...+97-98-99+100\)
\(C=-1+1-1+1-...-1+1\)
\(C=0\)
\(D=2^{2024}-2^{2023}-...-1\)
\(D=2^{2024}-\left(2^0+2^1+2^2+...2^{2023}\right)\)
\(D=2^{2024}-\left(\dfrac{2^{2024}-1}{2-1}\right)\)
\(D=2^{2024}-\left(2^{2024}-1\right)\)
\(D=2^{2024}-2^{2024}+1\)
\(D=1\)
A = 1 - 2 + 3 - 4 + 5 - 6 + 7 - 8 +...+ 99 - 100
A = (1 - 2) + ( 3 - 4) + ( 5- 6) +....+(99 - 100)
Xét dãy số 1; 3; 5;...;99
Dãy số trên là dãy số cách đều có khoảng cách là: 3 - 1 = 2
Dãy số trên có số số hạng là: (99 - 1) : 2 + 1 = 50 (số)
Vậy tổng A có 50 nhóm, mỗi nhóm có giá trị là: 1- 2 = -1
A = - 1\(\times\)50 = -50
b,
B = 1 + 3 - 5 - 7 + 9 + 11-...- 397 - 399
B = ( 1 + 3 - 5 - 7) + ( 9 + 11 - 13 - 15) + ...+( 393 + 395 - 397 - 399)
B = -8 + (-8) +...+ (-8)
Xét dãy số 1; 9; ...;393
Dãy số trên là dãy số cách đều có khoảng cách là: 9-1 = 8
Dãy số trên có số số hạng là: ( 393 - 1): 8 + 1 = 50 (số hạng)
Tổng B có 50 nhóm mỗi nhóm có giá trị là -8
B = -8 \(\times\) 50 = - 400
c,
C = 1 - 2 - 3 + 4 + 5 - 6 +...+ 97 - 98 - 99 +100
C = ( 1 - 2 - 3 + 4) + ( 5 - 6 - 7+ 8) +...+ ( 97 - 98 - 99 + 100)
C = 0 + 0 + 0 +...+0
C = 0
d, D = 22024 - 22023- ... +2 - 1
2D = 22005- 22004 + 22003+...- 2
2D + D = 22005 - 1
3D = 22005 - 1
D = (22005 - 1): 3
T=(a*2/3):5/6 a:8/15 với a=-4/5
I=3/4*a+4/9*a-1/4*a với a=12/5
P=a(b+1/5)-a*(6/5+b) với a= 2004 ;b=206
Q=1/19*a+3*b:5/7+9/4 với a=38;b=-10/7
V=3/2*(a+b+c)- 1/5*(a-b-c) với a=1/3;b=-5/6;c=3/4
giúp mình với
Chứng minh rằng:
1/6<1/5^2+1/6^2+1/7^2+..+1/100^2<1/4
giúp mình nhé.Mình tick cho
Ta có:\(\frac{1}{5.6}\)<\(\frac{1}{5^2}<\frac{1}{4.5}\)
\(\frac{1}{6.7}\) \(\frac{1}{6^2}<\frac{1}{5.6}\)....
\(\frac{1}{100,101}<\frac{1}{100^2}<\frac{1}{99.100}\)
=>\(\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{100.101}<\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{100^2}<\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{99.100}\)
<=>\(\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{100}-\frac{1}{101}<\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{100^2}<\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)
\(\frac{1}{5}-\frac{1}{101}
Đặt :
A=1/5^2+1/6^2+...+1/100^2
Ta có:
A<1/4.5+1/5.6+...+1/99.100=1/4-1/5+1/5-1/6+...+1/99-1/100=1/4-1/100<1/4
Đúng thì k nha!
Ta có:
A>1/5.6+1/6.7+...+1/100.101=1/5-1/6+1/6-1/7+....+1/100+1/101>1/6
A=1/2^2+1/100^2 Chứng minh rằng A<1
B=1/1^2+1/1^2+1/3^2+...+1/100^2 Chứng minh rằng B<1 3/4 (hỗn số nhé)
C=1/1^2+1/4^2+1/6^2+...+1/100^2 Chứng minh rằng C<1/2
D=1/4^2+1/5^2+1/6^2+...+1/99^2+1/100^2 Chứng minh rằng 1/5<D<1/3
Giup mình nha mình đang cần gấp
a>
\(\frac{1}{2^2}+\frac{1}{100^2}\)=1/4+1/10000
ta có 1/4<1/2(vì 2 đề bài muốn chứng minh tổng đó nhỏ 1 thì chúng ta phải xét xem có bao nhiêu lũy thừa hoặc sht thì ta sẽ lấy 1 : cho số số hạng )
1/100^2<1/2
=>A<1
chứng minh rằng : \(\frac{1}{6}< \frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{100^2}< \frac{1}{4}\)
giúp mình với. mình đang cần gấp
Ta có :
\(\frac{1}{5^2}>\frac{1}{5.6}\)
\(\frac{1}{6^2}>\frac{1}{6.7}\)
\(..............\)
\(\frac{1}{100^2}>\frac{1}{100.101}\)
\(\Rightarrow A=\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{100^2}>\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{100.101}\)
\(\Rightarrow A>\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{100}-\frac{1}{101}\)
\(\Rightarrow A>\frac{1}{5}-\frac{1}{101}=\frac{96}{505}>\frac{96}{576}=\frac{1}{6}\left(1\right)\)
Lại có :
\(\frac{1}{5^2}< \frac{1}{4.5}\)
\(\frac{1}{6^2}< \frac{1}{5.6}\)
\(...............\)
\(\frac{1}{100^2}< \frac{1}{99.100}\)
\(\Rightarrow A=\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{100^2}< \frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{99.100}\)
\(\Rightarrow A< \frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)
\(\Rightarrow A< \frac{1}{4}-\frac{1}{100}< \frac{1}{4}\left(2\right)\)
Từ (1) và (2) => Điều phải chứng minh
3.tìm số tự nhiên có 5 chữ số biết rằng nếu viết thêm một chữ số vào đằng sau số đó thì được số lớn gấp 3 lần số có được nếu viết thêm chính chữ số ấy vào sau số đó.
4.tính:
a) A=1+2+3+...+(n-1)+n
b)B=1*2+2*3+3*4+...+99*100
c)C=1*3+2*4+3*5+...+99*101
d)D=1*4+2*5+3*6+...+99*102
f)F=1+3+5+7+..+(2n-1)
e)E=1*2*3+2*3*4+3*4*5+...+98*99*100
giúp mình nha 7 giờ mình đi học thêm rồi.
1,tìm x1
1/5.8+1/8.11+1/11.14+...+1/x.(x+3)=101/1540
2,cho n là một số tự nhiên . chứng minh rằng n(n+1)(2n+1) chia hết cho 6
3, rút gọn A=1/2+1/2^2+1/2^3+...+1/2^2011
4,so sánh C và D
C=4+1/7^6+3/7+4/7^2+-441/7^6+27/7^5 và D =147/7^3+4+35/7^7+4/7^2+27/7^5 +-9/7^9
5,chứng minh rằng với mọi số tự nhiên thì các số 2n+3 và 4n+8 là hai số nguyên cùng nhau
mình đang cần gấp mong các bạn giúp đỡ mình ^-^
1,tìm x1
1/5.8+1/8.11+1/11.14+...+1/x.(x+3)=101/1540
2,cho n là một số tự nhiên . chứng minh rằng n(n+1)(2n+1) chia hết cho 6
3, rút gọn A=1/2+1/2^2+1/2^3+...+1/2^2011
4,so sánh C và D
C=4+1/7^6+3/7+4/7^2+-441/7^6+27/7^5 và D =147/7^3+4+35/7^7+4/7^2+27/7^5 +-9/7^9
5,chứng minh rằng với mọi số tự nhiên thì các số 2n+3 và 4n+8 là hai số nguyên cùng nhau
mình đang cần gấp mong các bạn giúp đỡ mình ^-^