Những câu hỏi liên quan
Mai Anh
Xem chi tiết
Khôi Bùi
6 tháng 4 2019 lúc 20:45

Với x ; y > 0 , cần c/m : \(x^3+y^3\ge xy\left(x+y\right)\)

Ta có : \(x^3+y^3-xy\left(x+y\right)=\left(x+y\right)\left(x^2-xy+y^2-xy\right)=\left(x+y\right)\left(x-y\right)^2\ge0\)

( điều này luôn đúng với mọi x ; y > 0 )

=> BĐT được c/m

Áp dụng vào bài toán , ta có :

\(\frac{1}{x^3+y^3+xyz}+\frac{1}{y^3+z^3+xyz}+\frac{1}{x^3+z^3+xyz}\le\frac{1}{xy\left(x+y\right)+xyz}+\frac{1}{yz\left(y+z\right)+xyz}+\frac{1}{xz\left(x+z\right)+xyz}=\frac{1}{xy\left(x+y+z\right)}+\frac{1}{yz\left(x+y+z\right)}+\frac{1}{xz\left(x+y+z\right)}=\frac{x+y+z}{xyz\left(x+y+z\right)}=\frac{1}{xyz}\)

Dấu " = " xảy ra \(\Leftrightarrow x=y=z;x,y,z>0\)

gorosuke
Xem chi tiết
Nguyễn diệp hương
Xem chi tiết
Akai Haruma
8 tháng 10 2021 lúc 10:07

Lời giải:
a. Xét hiệu:

$x^3+y^3-xy(x+y)=(x^3-x^2y)-(xy^2-y^3)=x^2(x-y)-y^2(x-y)$

$=(x-y)(x^2-y^2)=(x-y)^2(x+y)\geq 0$ với mọi $x,y\geq 0$

$\Rightarrow x^3+y^3\geq xy(x+y)$

Dấu "=" xảy ra khi $x=y$

b.

Áp dụng BĐT phần a vô:

$x^3+y^3\geq xy(x+y)$

$\Rightarrow x^3+y^3+1\geq xy(x+y)+1=xy(x+y)+xyz=xy(x+y+z)$

$\Rightarrow \frac{1}{x^3+y^3+1}\leq \frac{1}{xy(x+y+z)}=\frac{xyz}{xy(x+y+z)}=\frac{z}{x+y+z}$

Hoàn toàn tương tự với các phân thức còn lại suy ra:

$\text{VT}\geq \frac{z}{x+y+z}+\frac{x}{x+y+z}+\frac{y}{x+y+z}=1$

Ta có đpcm

Dấu "=" xảy ra khi $x=y=z=1$

luong quang tuan
Xem chi tiết
Phạm Thành Đông
26 tháng 6 2021 lúc 9:16

\(\frac{1}{x}=a;\frac{1}{y}=b;\frac{1}{z}=c\left(x,y,z\ne0\right)\).

Ta có:

\(a+b+c=0\).

Ta phải chứng minh rằng nếu \(a+b+c=0\)thì \(a^3+b^3+c^3=3abc\).

Thật vậy, xét hiệu  \(A=a^3+b^3+c^3-3abc\)với \(a+b+c=0\).

\(A=\left(a+b\right)^3-3ab\left(a+b\right)-3abc+c^3\).

\(A=\left[\left(a+b\right)^3+c^3\right]-\left[3ab\left(a+b\right)+3abc\right]\).

\(A=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]\)\(-3ab\left(a+b+c\right)\).

\(A=\left(a+b+c\right)\left(a^2+2ab+b^2-ab-ac+c^2-3ab\right)\).

\(A=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\).

\(A=0\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)(vì \(a+b+c=0\)).

Do đó \(a^3+b^3+c^3-3abc=0\).

\(\Rightarrow a^3+b^3+c^3=3abc\)với \(a+b+c=0\)

\(\Rightarrow\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}=\frac{3}{xyz}\)với \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)(điều phải chứng minh).

Khách vãng lai đã xóa
Bình Lê Thanh
Xem chi tiết
Hoàn Minh
Xem chi tiết
Phạm Thanh Lâm
Xem chi tiết
Bùi Đức Huy Hoàng
25 tháng 1 2022 lúc 7:56

giả sử cả 3 số xyz đều nhỏ hơn 1 

=>x+y+z<1+1+1=3

ta có x+y+z>\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\)=\(\dfrac{xy+yz+xz}{xyz}\)\(\ge\)\(\dfrac{3\sqrt[3]{\left(abc\right)^2}}{abc}\) =\(\dfrac{3}{\sqrt[3]{abc}}=\dfrac{3}{\sqrt[3]{1}}=3\) vậy x+y+z >3

từ đó sẽ có ít nhất 1 trong 3 số lớn hơn 1

LÂM 29
Xem chi tiết
Emilia Nguyen
Xem chi tiết
Võ Hồng Phúc
1 tháng 12 2019 lúc 19:26

Ta có:

\(x^2+y^2\ge2xy\Rightarrow x^2+y^2-xy\ge xy\)

\(\Leftrightarrow\left(x+y\right)\left(x^2+y^2-xy\right)\ge xy\left(x+y\right)\)

\(\Leftrightarrow x^3+y^3\ge xy\left(x+y\right)\)

\(\Rightarrow\frac{1}{x^3+y^3+xyz}\le\frac{1}{xy\left(x+y\right)+xyz}=\frac{1}{x+y+z}.\frac{1}{xy}\)

Tương tự: \(\frac{1}{y^3+z^3+xyz}\le\frac{1}{x+y+z}.\frac{1}{yz}\) ;\(\frac{1}{z^3+x^3+xyz}\le\frac{1}{x+y+z}.\frac{1}{zx}\)

\(\Rightarrow\frac{1}{x^3+y^3+xyz}+\frac{1}{y^3+z^3+xyz}+\frac{1}{z^3+x^3+xyz}\)

\(\le\frac{1}{x+y+z}.\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)=\frac{x+y+z}{\left(x+y+z\right)xyz}=\frac{1}{xyz}\)

Dấu \(=\) xảy ra \(\Leftrightarrow x=y=z>0\)

Khách vãng lai đã xóa