Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Gia Phúc
Xem chi tiết
Diệu Anh
24 tháng 9 2021 lúc 19:25

Đề như này đúng chưa ạ?: (x-2)(x2 + 2x+4) - 128 + x3

=x3 - 23 - 128 + x3

= 2x3 -136 

Khách vãng lai đã xóa
Vũ Đức Đăng
18 tháng 12 2021 lúc 22:08

mình ko biết bn ơi :)

Khách vãng lai đã xóa
Hắc Tử Thiên
Xem chi tiết
Linh Hoa Thị Thùy
5 tháng 6 2017 lúc 16:54

cậu có thể viết lại cho dễ hiểu hơn ko?

Hắc Tử Thiên
5 tháng 6 2017 lúc 16:57

\(\frac{\sqrt{x}}{\sqrt{x}-1}\)\(-\frac{1}{x-\sqrt{x}}\)

Linh Hoa Thị Thùy
5 tháng 6 2017 lúc 17:36

a. ĐKXĐ là\(\hept{\begin{cases}x\ge0\\\sqrt{x}-1\ne0\\x-\sqrt{x}\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge0\\x\ne1\\\sqrt{x}\left(\sqrt{x}-1\right)\ne0\end{cases}\Leftrightarrow}\hept{\begin{cases}x>0\\x\ne1\\x\ne0\end{cases}}}\) 

b. ta có:

\(P=\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\)

\(=\frac{x-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\)

\(=\frac{\left(\sqrt{x}-1\right)\left(\left(\sqrt{x}+1\right)\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}\)

\(=\frac{\sqrt{x}+1}{\sqrt{x}}\)

c. đồng thời nhận giá trị nguyên là x nguyên hay P nguyên vậy?

Nguyễn Cao Nam
Xem chi tiết
Nguyễn Cao Nam
2 tháng 5 2023 lúc 21:00

Giúp tớ với

 

Nguyễn Quỳnh Diệp
Xem chi tiết
K.Hòa-T.Hương-V.Hùng
Xem chi tiết
VŨ THỊ LAN
Xem chi tiết
VŨ THỊ LAN
16 tháng 9 2017 lúc 18:06

giúp mk vs nha , mk đăng cần rất gấp

Thiên Thần Công Chúa
16 tháng 9 2017 lúc 18:21

mình hk bít vít

Ben 10
16 tháng 9 2017 lúc 19:47

a) A = (2x + 1)/(x² + 2) 
Tìm min 
ta có: A = (2x + 1)/(x² + 2) 
=> 2A = (4x + 2)/(x² + 2) 
= (4x + 2 + x² - x² + 2 - 2)/(x² + 2) 
= [ (x² + 4x + 4) + (-x² - 2) ]/(x² + 2) 
= [ (x + 2)² - (x² + 2) ]/(x² + 2) 
= (x + 2)²/(x² + 2) - (x² + 2)/(x² + 2) 
= (x + 2)²/(x² + 2) - 1 
Ta có: (x + 2)² ≥ 0 và (x² + 2) > 0 
=> (x + 2)²/(x² + 2) ≥ 0 
=> (x + 2)²/(x² + 2) - 1 ≥ -1 
=> 2A ≥ -1 
=> A ≥ -1/2 
Dấu bằng xảy ra <=> (x + 2)²/(x² + 2) = 0 
<=> (x + 2)² = 0 
<=> x + 2 = 0 
<=> x = -2 

Tìm max: A = (2x + 1)/(x² + 2) 
= (2x + 2 - 1 + x² - x²)/(x² + 2) 
= [ (x² + 2) + (-x² + 2x - 1) ]/(x² + 2) 
= [ (x² + 2) - (x² - 2x + 1) ]/(x² + 2) 
= [ (x² + 2) - (x - 1)² ]/(x² + 2) 
= (x² + 2)/(x² + 2) - (x - 1)²/(x² + 2) 
= 1 - (x - 1)²/(x² + 2) 
Do (x - 1)² ≥ 0 và (x² + 2) > 0 
=> (x - 1)²/(x² + 2) ≥ 0 
=> -(x - 1)²/(x² + 2) ≤ 0 
=> 1 - (x - 1)²/(x² + 2) ≤ 1 
=> A ≤ 1. 
Dấu bằng xảy ra <=> -(x - 1)²/(x² + 2) = 0 
<=> -(x - 1)² = 0 
<=> (x - 1)² = 0 
<=> x - 1 = 0 
<=> x = 1. 

b) Tìm min: B = (8x + 3)/(4x² + 1) 
= (8x + 4 - 1 + 4x² - 4x²)/(4x² + 1) 
= [ (4x² + 8x + 4) + (-4x² - 1) ]/(4x² + 1) 
= [ (4x² + 8x + 4) - (4x² + 1) ]/(4x² + 1) 
= [ (2x + 2)² - (4x² + 1) ]/(4x² + 1) 
= (2x + 2)²/(4x² + 1) - (4x² + 1)/(4x² + 1) 
= (2x + 2)²/(4x² + 1) - 1 
Do (2x + 2)² ≥ 0 và 4x² + 1 > 0 
=> (2x + 2)²/(4x² + 1) ≥ 0 
=> (2x + 2)²/(4x² + 1) - 1 ≥ -1 
=> B ≥ -1 
Dấu bằng xảy ra <=> (2x + 2)²/(4x² + 1) = 0 
<=> (2x + 2)² = 0 
<=> 2x + 2 = 0 
<=> 2x = -2 
<=> x = -1. 

Tìm max: B = (8x + 3)/(4x² + 1) 
= (8x + 4 - 1 + 16x² - 16x²)/(4x² + 1) 
= [ (16x² + 4) + (-16x² + 8x - 1) ]/(4x² + 1) 
= [ 4(4x² + 1) - (16x² - 8x + 1) ]/(4x² + 1) 
= [ 4(4x² + 1) - (4x - 1)² ]/(4x² + 1) 
= 4(4x² + 1)/(4x² + 1) - (4x - 1)²/(4x² + 1) 
= 4 - (4x - 1)²/(4x² + 1) 
Đến đây lập luận tương tự để chỉ ra maxB = 4 <=> x = 1/4 

c) tìm min: C = 2(x² + x + 1)/(x² + 1) 
= (2x² + 2x + 2)/(x² + 1) 
= [ (x² + 1) + (x² + 2x + 1) ]/(x² + 1) 
= [ (x² + 1) + (x + 1)² ]/(x² + 1) 
= (x² + 1)/(x² + 1) + (x + 1)²/(x² + 1) 
Lập luận tương tự để tìm ra min C = 1 <=> x = -1 

tìm max: C = 2(x² + x + 1)/(x² + 1) 
= (2x² + 2x + 2)/(x² + 1) 
= (3x² - x² + 2x + 3 - 1)/(x² + 1) 
= [ (3x² + 3) + (-x² + 2x - 1) ]/(x² + 1) 
= [ 3(x² + 1) - (x² - 2x + 1) ]/(x² + 1) 
= [ 3(x² + 1) - (x - 1)² ]/(x² + 1) 
= 3(x² + 1)/(x² + 1) - (x - 1)²/(x² + 1) 
Lập luận tương tự như trên để tìm ra max C = 3 <=> x = 1

tài
Xem chi tiết
Ngô Chi Lan
15 tháng 7 2020 lúc 21:43

Bài làm:

Ta có: \(\frac{x-1}{3}+\frac{x-3}{4}=2\)

\(\Leftrightarrow\left(\frac{x}{3}+\frac{x}{4}\right)=2+\frac{1}{3}+\frac{3}{4}\)

\(\Leftrightarrow\frac{7}{12}x=\frac{37}{12}\)

\(\Leftrightarrow x=\frac{37}{12}\div\frac{7}{12}\)

\(\Rightarrow x=\frac{37}{7}\)

Khách vãng lai đã xóa
l҉o҉n҉g҉ d҉z҉
15 tháng 7 2020 lúc 21:51

\(\frac{x-1}{3}+\frac{x-3}{4}=2\)

\(\Leftrightarrow\frac{4\left(x-1\right)}{12}+\frac{3\left(x-3\right)}{12}=\frac{24}{12}\)

\(\Leftrightarrow4\left(x-1\right)+3\left(x-3\right)=24\)

\(\Leftrightarrow4x-4+3x-9=24\)

\(\Leftrightarrow7x-13=24\)

\(\Leftrightarrow7x=37\)

\(\Leftrightarrow x=\frac{37}{7}\)

Khách vãng lai đã xóa
๖²⁴ʱんuリ イú❄✎﹏
15 tháng 7 2020 lúc 22:11

\(\frac{x-1}{3}+\frac{x-3}{4}=2\Leftrightarrow\frac{4\left(x-1\right)}{12}+\frac{3\left(x-3\right)}{12}=\frac{24}{12}\)

Khử mẫu : \(4x-4+3x-9=24\)

\(\Leftrightarrow7x-13=24\Leftrightarrow7x=37\)

\(\Leftrightarrow x=\frac{37}{7}\)Vậy pt có nghiệm là x = 37/7 

Khách vãng lai đã xóa
Thiếu Gia Họ Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 11 2021 lúc 23:03

Đề sai rồi bạn

Hải Yến Lê
Xem chi tiết
Yeutoanhoc
9 tháng 7 2021 lúc 17:23

`B=(1/(3-sqrtx)-1/(3+sqrtx))*(3+sqrtx)/sqrtx(x>=0,x ne 9)`

`B=((3+sqrtx)/(9-x)-(3-sqrtx)/(9-x))*(3+sqrtx)/sqrtx`

`B=((3+sqrtx-3+sqrtx)/(9-x))*(3+sqrtx)/sqrtx`

`B=(2sqrtx)/((3-sqrtx)(3+sqrtx))*(3+sqrtx)/sqrtx`

`B=2/(3-sqrtx)`

`B>1/2`

`<=>2/(3-sqrtx)-1/2>0`

`<=>(4-3+sqrtx)/[2(3-sqrtx)]>0`

`<=>(sqrtx+1)/(2(3-sqrtx))>0`

Mà `sqrtx+1>=1>0`

`<=>2(3-sqrtx)>0`

`<=>3-sqrtx>0`

`<=>sqrtx<3`

`<=>x<9`