Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoàng văn tiến
Xem chi tiết

a: \(a^2+4b^2+9c^2=2ab+6bc+3ac\)

=>\(2a^2+8b^2+18c^2-4ab-12bc-6ac=0\)

=>\(a^2-4ab+4b^2+4b^2-12bc+9c_{}^2+a^2-6ac+9c^2=0\)

=>\(\left(a-2b\right)^2+\left(2b-3c\right)^2+\left(a-3c\right)^2=0\)

=>\(\begin{cases}a-2b=0\\ 2b-3c=0\\ 3c-a=0\end{cases}\Rightarrow a=2b=3c\)

\(A=\left(a-2b+1\right)^{2022}+\left(2b-3c-1\right)^{2023}+\left(3c-a+1\right)^{2024}\)

\(=\left(a-a+1\right)^{2022}+\left(2b-2b-1\right)^{2023}+\left(a-a+1\right)^{2024}\)

=1-1+1

=1

b: \(x^2+2xy+6x+6y+2y^2+8=0\)

=>\(x^2+2xy+y^2+6\left(x+y\right)+9+y^2-1=0\)

=>\(\left(x+y+3\right)^2-1=-y^2\)

=>\(-y^2=\left(x+y+2\right)\left(x+y+4\right)\)

=>\(-y^2=\left(x+y+2024-2022\right)\left(x+y+2024-2020\right)\)

=>\(-y^2=\left(A-2022\right)\left(A-2020\right)\)

\(-y^2\le0\forall y\)

nên (A-2022)(A-2020)<=0

=>2020<=A<=2022

\(A_{\min}=2020\) khi x+y+2=0 và y=0

=>y=0 và x=-2-y=-2-0=-2

\(A\max=2022\) khi x+y+4=0 và y=0

=>y=0 và x=-y-4=-4

Hoàng văn tiến
Xem chi tiết
Akai Haruma
13 tháng 12 2023 lúc 19:51

A.

$a^2+4b^2+9c^2=2ab+6bc+3ac$

$\Leftrightarrow a^2+4b^2+9c^2-2ab-6bc-3ac=0$

$\Leftrightarrow 2a^2+8b^2+18c^2-4ab-12bc-6ac=0$

$\Leftrightarrow (a^2+4b^2-4ab)+(a^2+9c^2-6ac)+(4b^2+9c^2-12bc)=0$

$\Leftrightarrow (a-2b)^2+(a-3c)^2+(2b-3c)^2=0$

$\Rightarrow a-2b=a-3c=2b-3c=0$

$\Rightarrow A=(0+1)^{2022}+(0-1)^{2023}+(0+1)^{2024}=1+(-1)+1=1$

 

Akai Haruma
13 tháng 12 2023 lúc 19:53

B.

$x^2+2xy+6x+6y+2y^2+8=0$

$\Leftrightarrow (x^2+2xy+y^2)+y^2+6x+6y+8=0$

$\Leftrightarrow (x+y)^2+6(x+y)+9+y^2-1=0$

$\Leftrightarrow (x+y+3)^2=1-y^2\leq 1$ (do $y^2\geq 0$ với mọi $y$)

$\Rightarrow -1\leq x+y+3\leq 1$

$\Rightarrow -4\leq x+y\leq -2$

$\Rightarrow 2020\leq x+y+2024\leq 2022$

$\Rightarrow A_{\min}=2020; A_{\max}=2022$

Vũ Anh Khôi
1 tháng 11 2024 lúc 21:57

Ko thèm tick cho người ta mà đòi hỏi câu khác ✅

Khánh Nguyên Phan
Xem chi tiết
Shitou TV
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
4 tháng 1 2021 lúc 15:27

đặt \(\frac{a}{2020}=\frac{b}{2021}=\frac{c}{2022}=k\Rightarrow\hept{\begin{cases}a=2020k\\b=2021k\\c=2022k\end{cases}}\)

Khi đó \(A=\frac{a-b+c}{a+2b-c}=\frac{2020k-2021k+2022k}{2020k+2\cdot2021k-2022k}=\frac{2021k}{4040k}=\frac{2021}{4040}\)

Khách vãng lai đã xóa
Nguyễn Ngọc Anh Minh
4 tháng 1 2021 lúc 15:02

\(\frac{a}{2020}=\frac{b}{2021}=\frac{c}{2020}=\frac{a-b+c}{2020-2021+2022}=\frac{a-b+c}{2021}\)

\(\frac{a}{2020}=\frac{2b}{2021.2}=\frac{c}{2022}=\frac{a+2b-c}{2020+4042-2022}=\frac{a+2b-c}{4040}\)

\(\Rightarrow\frac{a-b+c}{2021}=\frac{a+2b-c}{4040}\Rightarrow A=\frac{a-b+c}{a+2b-c}=\frac{2021}{4040}\)

Khách vãng lai đã xóa
Lê Anh Sơn
Xem chi tiết
✓ ℍɠŞ_ŦƦùM $₦G ✓
Xem chi tiết
Trần Thị Loan
25 tháng 7 2015 lúc 22:03

(a + 3c) + (a+ 2b) = 8 + 9 = 17

=> 2a + 2b + 3c = 17 => 2.(a+b+ c) + c = 17

a + b + c lớn nhất => 2.(a+b+c) lớn nhất => c nhỏ nhất ; c không âm => c = 0

=> a = 8 => 8 + 2b = 9 => b = 1/2

Vậy a = 8; b = 1/2; c = 0 thì...

OoO_Nhok_Lạnh_Lùng_OoO
30 tháng 7 2017 lúc 20:59

Ta có: 

a+2c+a+3b=8+9

=> 2a+3b+2c=17

=> 2(a+b+c)+c=17

Vì a+b+c lớn nhất=> 2(a+b+c) lớn nhất

=> c nhỏ nhất không âm.

=> a=8

b=1/2

c= 0

Vậy a=8

Lâm Lê Tùng
Xem chi tiết
Lấp La Lấp Lánh
17 tháng 12 2021 lúc 21:41

a) \(M=2022-\left|x-9\right|\le2022\)

\(maxM=2022\Leftrightarrow x=9\)

b) \(N=\left|x-2021\right|+2022\ge2022\)

\(minN=2022\Leftrightarrow x=2021\)

Tuấn Phạm Minh
Xem chi tiết
Chu Uyên Như
18 tháng 8 2015 lúc 20:27

Xin loi! minh moi hoc lop 6

Chu Uyên Như
18 tháng 8 2015 lúc 20:29

xin loi minh moi hoc lop 6 thoi!

NGUYỄN HỒNG AN
8 tháng 12 2016 lúc 20:54

từ a+3b=8 ,a+2b=9 suy ra 2a +2b+3c=17 .do đó 2*(a+b+c)+c=17.để a+b+c lớn nhất , phải có nhỏ nhất ,mà lớn hơn hoặc bằng 0 nên c=0 khi đó a=8 ,b =1:2 ,GTLN  của a+b+c bằng 8.5

helptuilmbtvsmn
Xem chi tiết