Chứng minh rằng 2n+1/n(n+1) là phân số tối giản
Chứng minh rằng phân số n+1/2n+3 là tối giản (n ∈ N)
Giả sử n+1 chia hết cho x --> 2n+2 chia hết cho x
2n+3 chia hết cho x
==> (2n+3)- (2n+2) chia hết cho x ==> 1 chia hết cho x tức là x=1 nên n+1 và 2n+3 chỉ có ước chung là 1 vì vậy mà phân số trên tối giản
Thiếu đề bài bạn ơi bạn đọc lại coi nào
a) Tìm số tự nhiên n để phân số M= n-1/n-2( n thuộc Z, n khác 2) là phân số tối giản
b) Chứng minh rằng với mọi số tự nhiên n, A = 2n+1/2n+3 là phân số tối giản
a, Chứng minh rằng với mọi số tự nhiên n thì \(\dfrac{n+1}{2n+3}\) là phân số tối giản
b, Chứng minh rằng với mọi số tự nhiên a, b thì \(\dfrac{7a+5b}{9a+4b}\) là phân số tối giản
a/
Gọi $d=ƯCLN(n+1, 2n+3)$
$\Rightarrow n+1\vdots d; 2n+3\vdots d$
$\Rightarrow 2n+3-2(n+1)\vdots d$
$\Rightarrow 1\vdots d$
$\Rightarrow d=1$
Vậy $\frac{n+1}{2n+3}$ là phân số tối giản với mọi số tự nhiên $n$
b/
Cho $a=2, b=2$ thì phân số đã cho bằng $\frac{24}{26}$ không là phân số tối giản bạn nhé.
Bạn xem lại đề.
Chứng minh rằng, phân số A=n+1/ 2n+1 là phân số tối giản
Gọi d thuộc Ư C ( n + 1 ; 2n + 1 )
=> \(\hept{\begin{cases}n+1⋮d\\2n+1⋮d\end{cases}}\)=> \(\hept{\begin{cases}2n+2⋮d\\2n+1⋮d\end{cases}}\)=> ( 2n + 2 ) - ( 2n + 1 ) chia hết cho d => 1 chia d => d thuộc Ư ( 1 )
Vậy A là phân số tối giản
nếu n+1 chia hết cho d
mà 2n+1 cũng chia hết cho d
d sẽ thuộc ƯC(2n+1,n+1) mà ước chung của mẫu và tử của phân số tối giản chỉ có thể là 1 hoặc -1
vì n+1 chia hết cho d nên n+1x2=2n+2 cũng sẽ chia hết cho d
=> 2n+2-2n+1=1 và sẽ chia hết cho d nên d chỉ có thể là 1 hoặc -1
vì vậy nên phân số A=n+1/2n+1 là phân số tối giản
Gọi d là ước chung của n + 1 và 2n + 1
ta có \(n+1⋮d\Rightarrow2.\left(n+1\right)⋮d\Rightarrow2n+2⋮d\) và \(2n+1⋮d\)
\(\Rightarrow\left(2n+2\right)-\left(2n+1\right)⋮d\)
\(2n+2-2n-1⋮d\)
\(1⋮d\)
\(\Rightarrow d\in\left\{1;-1\right\}\)
Vậy \(\frac{n+1}{2n+1}\)là phân số tối giản
Chứng minh rằng với mọi số tự nhiên n, phân số 12n+1/2n(n+2) là phân số tối giản
Vì 12n+1 = 12n +24 - 23 = 12 (n+2) - 23
=> 12n+1 / 2 (n+2) = 12 (n+2) - 23 / 2n (n+2) = 12 (n+2) / 2n (n+2) - 23 / 2n (n+2) = 6 / n - 23 / 2n (n+2)
Ta có: 2n (n+2) chia hết cho 2
=> 2n (n+2) là số chẵn
Mà 23 là số lẻ nên phân số 23 / 2n (n+2) là phân số tối giản
=> 6 / n - 23 / 2n (n+2) là phân số tối giản
Vậy 12n+1 / 2 (n+2) là phân số tối giản
Chứng minh rằng với mọi số tự nhiên n, phân số 12n+1/2n(n+2) là phân số tối giản.
Mọi người ai trả lời giúp mình với ! @_@
Sau một hồi tìm hiểu thì mình đã có lời giải r, bạn nào chưa bt thì tham khảo nhé !
Vì 12n+1 = 12n +24 - 23 = 12 (n+2) - 23
=> 12n+1 / 2 (n+2) = 12 (n+2) - 23 / 2n (n+2) = 12 (n+2) / 2n (n+2) - 23 / 2n (n+2) = 6 / n - 23 / 2n (n+2)
Ta có: 2n (n+2) chia hết cho 2
=> 2n (n+2) là số chẵn
Mà 23 là số lẻ nên phân số 23 / 2n (n+2) là phân số tối giản
=> 6 / n - 23 / 2n (n+2) là phân số tối giản
Vậy 12n+1 / 2 (n+2) là phân số tối giản
Quách Dương Hà Anh mình ch bt là bạn giải đúng hay sai nhưng nếu giải thích là số lẻ/ số chẵn là phân số tối giản thì sai nhé.
VD: 3/12 = 1/4.
Phải giải thích là 23 là số nguyên tố => 23 chỉ chia hết cho chính nó và 1.
Mà 23 và 1 là số lẻ, còn 2n(n+2) là số chẵn nên 23 không chia hết cho 2n(n+2) =>....
Chứng minh rằng 2n + 2 / 2n + 1 là phân số tối giản của mọi n số nguyên
\(\frac{2n+2}{2n+1}=\frac{2n+1+1}{2n+1}=\frac{1}{2n+1}+1\)
Để \(\frac{1}{2n+1}\)Nguyên=> 1\(⋮\)2n+1
=> 2n+1\(\in\)Ư(1)={1,-1}
... Bn tự đưa ra 2 trường hợp nhé!
chứng minh rằng với mọi số tự nhiên n thì 2n+1/8n+6 là phân số tối giản
A = \(\dfrac{2n+1}{8n+6}\) (n \(\ne\) - \(\dfrac{3}{4}\))
Gọi ước chung lớn nhất của 2n + 1 và 8n + 6 là d
Ta có : \(\left\{{}\begin{matrix}2n+1⋮d\\8n+6⋮d\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}8n+4⋮d\\8n+6⋮d\end{matrix}\right.\)
Trừ vế cho vế ta được: 8n + 6 - 8n - 4 ⋮ d ⇒ 2 \(⋮\) d ⇒ d = { 1; 2}
Nếu d = 2 ta có: 2n + 1 ⋮ 2 ⇒ 1 ⋮ 2 ( vô lý)
Vậy d = 1 nên ước chung lớn nhất của 2n + 1 và 8n + 6 là 1
Hay phân số: \(\dfrac{2n+1}{8n+6}\) là phân số tối giản điều phải chứng minh
Chứng minh rằng 2n+2/2n+1 là phân số tối giản với mọi n nguyên giúp mk đi mà =((((
Để chứng minh phân số tối giản, ta đặt ƯCLN của tử số và mẫu số là d
Từ đề bài ta có : \(2n+2⋮d\) và \(2n+1⋮d\)
\(\Rightarrow\left(2n+2\right)-\left(2n+1\right)⋮d\Leftrightarrow\left(2n+2-2n-1\right)⋮d\)
\(\Leftrightarrow\left(2n-2n\right)+\left(2-1\right)⋮d\Leftrightarrow\left(0+1\right)⋮d\Leftrightarrow1⋮d\Leftrightarrow d=1\)
Vì ƯCLN của tử số và mẫu số là 1 nên hai số nguyên tố cùng nhau.
Hay \(\frac{2n+2}{2n+1}\) là phân số tối giản