tìm các số nguyên x y thỏa mãn x^2 - 4x = 3^y - 3
Tìm các số nguyên x,y thỏa mãn:6xy+4x-9y-7=0
Tìm giá trị nhỏ nhất của A=x^3+y^3+xy với x,y dương thỏa mãn x+y=1
Tìm các số nguyên x,y thỏa mãn 2x^2+1/x^2+y^2/4=4 sao cho xy đạt giá trị lớn nhất
HELP !
a) \(6xy+4x-9y-7=0\)
\(\Leftrightarrow2x.\left(3y+2\right)-9y-6-1=0\)
\(\Leftrightarrow2x.\left(3y+x\right)-3.\left(3y+2\right)=1\)
\(\Leftrightarrow\left(2x-3\right).\left(3y+2\right)=1\)
Mà \(x,y\in Z\Rightarrow2x-3;3y+2\in Z\)
Tự làm típ
\(A=x^3+y^3+xy\)
\(A=\left(x+y\right)\left(x^2-xy+y^2\right)+xy\)
\(A=x^2-xy+y^2+xy\)( vì \(x+y=1\))
\(A=x^2+y^2\)
Áp dụng bất đẳng thức Bunhiakovxky ta có :
\(\left(1^2+1^2\right)\left(x^2+y^2\right)\ge\left(x\cdot1+y\cdot1\right)^2=\left(x+y\right)^2=1\)
\(\Leftrightarrow2\left(x^2+y^2\right)\ge1\)
\(\Leftrightarrow x^2+y^2\ge\frac{1}{2}\)
Hay \(x^3+y^3+xy\ge\frac{1}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)
Tìm tất cả các cặp số nguyên (x;y) thỏa mãn :
\(x^2-y^2=4x+3\)
giải chi tiết dùm mìh với ạ
\(\Leftrightarrow x^2-4x+4-y^2=7\)
\(\Leftrightarrow\left(x-2\right)^2-y^2=7\)
\(\Leftrightarrow\left(x-y-2\right)\left(x+y-2\right)=7\)
Phương trình ước số cơ bản, chắc ko cần "chi tiết" hơn nữa đâu
tìm các cặp số nguyên x,y thỏa mãn biết xy+4x+y=3
\(xy+4x+y=3\)
\(\Leftrightarrow x\left(y+4\right)+\left(y+4\right)=7\)
\(\Leftrightarrow\left(x+1\right)\left(y+4\right)=7\)
Vì x ; y nguyên nên x + 1 nguyên , y + 4 nguyên
Ta có bảng
x + 1 | -7 | -1 | 1 | 7 |
y + 4 | -1 | -7 | 7 | 1 |
x | -8 | -2 | 0 | 6 |
y | -5 | -11 | 3 | -3 |
Vậy ,.............
\(xy+4x+y=3\)
\(\Rightarrow x\left(y+4\right)+\left(y+4\right)=3+4\)
\(\Rightarrow\left(x+1\right)\left(y+4\right)=7\)
\(\Rightarrow\left(x+1\right);\left(y+4\right)\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
Ta có các trường hợp sau
\(TH1:\hept{\begin{cases}x+1=1\\y+4=7\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\y=3\end{cases}}}\) \(TH2:\hept{\begin{cases}x+1=-1\\y+4=-7\end{cases}\Leftrightarrow\hept{\begin{cases}x=-2\\y=-11\end{cases}}}\)
\(TH3:\hept{\begin{cases}x+1=7\\y+4=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=6\\y=-3\end{cases}}}\) \(TH4:\hept{\begin{cases}x+1=-7\\y+4=-1\end{cases}\Leftrightarrow\hept{\begin{cases}x=-8\\y=-5\end{cases}}}\)
Vậy\(\left(x;y\right)\in\left\{\left(0;3\right);\left(-2;-11\right);\left(6;-3\right);\left(-8;-5\right)\right\}\)
Tìm các số nguyên x, y thỏa mãn \(4x^3+y^3-3xy^2-7=0\)
\(\left(x+y\right)\left(4x^2-4xy+y^2\right)=7\)
mik ngại vít,,,bạn tự lm nốt nha
4x3 + y3 - 3xy2 - 7 = 0
4x3 - 4x2y + 4x2y + xy2 - 4xy2 + y3 = 7
(4x3 - 4x2y + xy2) + (4x2y - 4xy2 + y3) = 7
x(4x2 - 4xy + y2) + y(4x2 - 4xy + y2) = 7
(x + y)(4x2 - 4xy + y2) = 7
(x + y).(2x - y)2 = 7
=> .....
1/tìm các cặp số nguyên (x;y) thỏa mãn:\(5x^2+2xy+y^2-4x-40=0\)0
2/tìm các số nguyên x;y thỏa mãn:\(3xy+x+15y-44=0\)
3/gtp nghiệm nguyên :\(2x^2+3xy-2y^2=7\)
\(3xy+x+15y-44=0\)
\(3y\left(x+5\right)+\left(x+5\right)-49=0\)
\(\left(x+5\right)\left(3y+1\right)=49\)
Vì x;y là số nguyên \(\Rightarrow\hept{\begin{cases}x+5\in Z\\3y+1\in Z\end{cases}}\)
Có \(\left(x+5\right)\left(3y+1\right)=49\)
\(\Rightarrow\left(x+5\right)\left(3y+1\right)\in\text{Ư}\left(49\right)=\left\{\pm1;\pm7;\pm49\right\}\)
b tự lập bảng nhé~
Tìm các cặp số nguyên x,y thỏa mãn:
a)4x2+4x=y3+y2+y
b)x4+2x2=y3
1.Tìm các số nguyên x và y thỏa manc 6xy+4x-9y-7=0
2.Tìm giá trị nhỏ nhất của biểu thức A=x3+y3+xy,trong đó x,y là các số dương thỏa mãn điều kiện x+y=1
C).(0,5 diem) 5 các số nguyên dương x, y, z thỏa tìm tất cả các số nguyên dương thỏa manc mãn: (2z - 4x)/3 = (3x - 2y)/4 = (4y - 3z)/2 và 200 < y ^ 2 + z ^ 2 < 450
Tìm các cặp số nguyên x,y thỏa mãn:
a)4x2+4x=y3+y2+y
b)x4+2x2=y3
1.
PT $\Leftrightarrow 4x^2+4x+1=y^3+y^2+y+1$
$\Leftrightarrow (2x+1)^2=(y^2+1)(y+1)$
Gọi $d=(y^2+1, y+1)$
$\Rightarrow y^2+1\vdots d; y+1\vdots d$
$\Rightarrow y(y+1)-(y^2+1)\vdots d$ hay $y-1\vdots d$
$\Rightarrow (y+1)-(y-1)\vdots d\Rightarrow 2\vdots d$
$\Rightarrow d=1,2$
Nếu $d=2$ thfi $(2x+1)^2\vdots 2$ (vô lý do $2x+1$ lẻ)
$\Rightarrow d=1$
Tức là $(y^2+1, y+1)=1$. Mà tích của chúng là 1 scp nên mỗi số
$y^2+1, y+1$ cũng là scp
Đặt $y^2+1=a^2; y+1=b^2$
$\Rightarrow (b^2-1)^2+1=a^2$
$\Leftrightarrow 1=a^2-(b^2-1)^2=(a-b^2+1)(a+b^2-1)$
$\Rightarrow a-b^2+1=a+b^2+1=1$ hoặc $a-b^2+1=a+b^2+1=-1$
Cả 2 TH đều suy ra $y=0$
$\Rightarrow 4x^2+4x=0\Rightarrow x=0$ hoặc $x=-1$
2.
$x^4+2x^2=y^3$
$\Leftrightarrow (x^2+1)^2=y^3+1=(y+1)(y^2-y+1)$
Đặt $d=(y+1, y^2-y+1)$
$\Rightarrow y+1\vdots d; y^2-y+1\vdots d$
$\Rightarrow (y+1)^2-(y^2-y+1)\vdots d$
$\Rightarrow 3y\vdots d$
Nếu $d\vdots 3$ thì $x^2+1\vdots 3$. Điều này vô lý do 1 scp khi chia 3 dư 0 hoặc 1,
$\Rightarrow x^2+1$ khi chia cho $3$ dư $2$ hoặc $1$ (tức là không chia hết cho 3)
Do đó $d$ và $3$ nguyên tố cùng nhau. Khi đó từ $3y\vdots d$
$\Rightarrow y\vdots d$
Kết hợp với $y+1\vdots d\Rightarrow 1\vdots d\Rightarrow d=1$
$\Rightarrow (y+1, y^2-y+1)=1$. Mà tích của chúng là scp nên mỗi số
$y+1, y^2-y+1$ cũng là scp
Đặt $y+1=a^2; y^2-y+1=b^2$ với $a,b\in\mathbb{N}$
Có:
$y^2-y+1=b^2$
$\Leftrightarrow (2y-1)^2+3=(2b)^2$
$\Leftrightarrow 3=(2b-2y+1)(2b+2y-1)$
Đây là dạng pt tích đơn giản và ta tìm được $y=0$ hoặc $y=1$
Thay vô pt ban đầu thì có cặp $(x,y)=(0,0)$
b, \(x^4+2x^2\ge0\Rightarrow y\ge0\)
- Với y = 0 = > x = 0
- Với \(y\ge1\)
\(\Leftrightarrow\left(x^2+1\right)^2=y^3+1=\left(y+1\right)\left(y^2-y+1\right)\)
Gọi \(d=ƯCLN\left(y+1;y^2-y+1\right)\)
\(\Rightarrow y\left(y+1\right)-\left(y^2-y+1\right)⋮d\)\(\Rightarrow2y-1⋮d\)
\(\Rightarrow2\left(y+1\right)-\left(2y-1\right)⋮d\)\(\Rightarrow3⋮d\)
- Nếu d = 3 = > \(VP⋮3\Rightarrow VT⋮3\Rightarrow x^2\equiv2\left(mod3\right)\)( vô lí )
- Nếu d = 1 = > \(\hept{\begin{cases}y+1=a^2\\y^2-y+1=b^2\end{cases}}\)
Ta có \(y\ge1\)\(\Rightarrow-y+1\le0\Rightarrow y^2-y+1\le y^2\)
Và \(y^2-y+1>y^2-2y+1\)
\(\Rightarrow\left(y-1\right)^2< y^2-y+1\le y^2\)
\(\Rightarrow y^2-y+1=y^2\Rightarrow y=1\)
Nhưng khi đó \(y+1=2\)không phải số chính phương ( loại )
Vậy phương trình có nghiệm duy nhất \(x=y=0\)