Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thám Tử Lừng Danh Conan
Xem chi tiết
quỳnh
Xem chi tiết
Ngô Tuấn Vũ
1 tháng 11 2015 lúc 10:27

c)D=4+42+43+44+...+42012

D=(4+42)+(43+44)+...+(42011+42012)

D=4.5+43.5+45.5+...+42011.5

D=5.(4+43+42011)

=>D chia hết cho 5

=>ĐPCM

Bùi Hồng Thắm
1 tháng 11 2015 lúc 10:24

tất cả đều có trong câu hỏi tương tự

Ngô Tuấn Vũ
1 tháng 11 2015 lúc 10:35

b)

A=(1+5+52)+(53+54+55)+...(5402+5403+5404)

A=31.1+31.53+...+31.5402

A=31.(1+53+...+5402)

=>A chia hết cho 31

=>Đâu phải con ma

 

nene
Xem chi tiết
Trần Nhật Dương
9 tháng 5 2019 lúc 20:26

Cách này cũng đúng nhưng có cách khác nhanh hơn

S = ( 5 + 5^2 + 5^3 + 5^4 ) + .....

Gộp 4 số liên tiếp lại rồi C/M

Chúc học tốt

Đậu Đức Anh Dũng
6 tháng 12 2020 lúc 19:58
Bạn làm đúng rồi nhưng hơi dài
Khách vãng lai đã xóa
nguyễn minh tiến
23 tháng 3 2021 lúc 20:14

6/7/8/9

Khách vãng lai đã xóa
nguyển tiến dũng
Xem chi tiết
Trần Thế Văn
16 tháng 1 2015 lúc 21:16

S=(5+52+53+54)+(55+56+57+58)+(59+510+511+512)+...+(52009+52010+52011+52012).(có 503 biểu thức)

S=65*A2+65*B0+65*C0+...+65*D0

Vì mỗi số hạng đều nhân cho 65

=> S chia hết cho 65

ngocthang
18 tháng 3 2018 lúc 15:03

lam sai rui

Hà Danh Duy
31 tháng 12 2018 lúc 10:31

S=5+52+53+..........+52012

S=(5+52+53+5^4)+..........+(5^2009+5^2010+5^2011+5^2012)

S=1(5+52+53+5^4)+.........+5^2008(5+52+53+5^4)

S=1.780+.........+5^2008.780

S=1.12.65+.......+5^2008.12.65

S=65[12(1+5^4+5^8+......+5^2008)] chia hết cho 65(có thừa số 65)

Vậy S chia hết cho 65 

erza scarlet
Xem chi tiết
Nguyễn Linh Chi
15 tháng 12 2019 lúc 18:47

Câu hỏi của Chu vinh thanh - Toán lớp 6 - Học toán với OnlineMath

Em tham khảo nhé!

Khách vãng lai đã xóa
Itsuka
Xem chi tiết
Ngọc Lan Tiên Tử
9 tháng 5 2019 lúc 20:28

từ (1) và (2)

=> S ⋮5

mình nghĩ hơi thừa chỉ cần từ (1) là đủ rồi

nên đánh (2) vào"=>S⋮5"

Để khi chứng tỏ thì nói "từ (1) và (2) => S ⋮ 65"

Phùng Tuệ Minh
9 tháng 5 2019 lúc 21:07

1) Ở (1) vô lý nha bạn, tổng S đều có số hạng 5 là sao? số hạng có tận cùng là 5 chứ.

Ok, mik nhận xét thế thôi nhé. Cách trình bày của bạn khá chặt chẽ. Mà bạn viết vào vở thì sử dụng kí hiệu toán học ý, trong toán đừng viết chữ nhiều quá. ( VD: chia hết cho)

Kimmy Nguyễn
Xem chi tiết
Phạm Tuấn Hoàng
Xem chi tiết
Đào Xuân Sơn
Xem chi tiết
Isolde Moria
18 tháng 9 2016 lúc 19:37

Ta có :

\(S=5+5^2+5^3+....+5^{2012}\)

\(\Rightarrow S=\left(5+5^3\right)+5\left(5+5^3\right)+.......+5^{2010}\left(5+5^3\right)\)

\(\Rightarrow S=130+5.130+.......+5^{2010}.130\)

\(\Rightarrow S=65.\left(2+5.2+.....+2^{2010}.2\right)\)

=> S chia hết cho 65

Kẹo dẻo
18 tháng 9 2016 lúc 19:58

S=\(5+5^2+5^3+...+5^{2012}\)

S=(5+\(\left(5+5^3\right)+\left(5^2+5^4\right)+...+\left(5^{2010}+5^{2012}\right)\)

S=2.65+10.65+50.65+...+1060.65\(⋮65\)

Vậy S\(⋮65\)