Tìm \(x,y\)nguyên dương thỏa mãn \(\left(4x-1\right)\left(x+2\right)=3^y\).
a) Tìm cặp số x,y nguyên dương thỏa mãn \(x^2+y^2\left(x-y+1\right)-\left(x-1\right)y=22\)
b) Tìm các cặp số x,y,z nguyên dương thỏa mãn \(\dfrac{xy+yz+zx}{x+y+z}=4\)
tìm các số nguyên dương x,y thỏa mãn \(\left(x+y\right)^2\)- 4x-5y-7=0
tìm số nguyên dương x,y thỏa mãn \(\left(x^2+y^2\right)\left(x+y-8\right)=8\left(xy+1\right)\)
Tìm số nguyên dương x,y thỏa mãn:
\(x\left(x+1\right)=y\left(y+2\right)\)
Tìm cặp số nguyên (x;y) thỏa mãn đẳng thức:
\(\left(2x-y\right)\left(4x^2+2xy+y^2\right)+\left(2x+y\right)\left(4x^2-2xy+y^2\right)-16x\left(x^2-y\right)=32\)
Tìm cặp số nguyên dương (x,y ) nhỏ nhất thỏa mãn điều kiên :
\(4\left(y^2-3\right)^2+\left(x+1\right)^3=334043\)
tìm x, y nguyên dương thỏa mãn \(3^x+111=\left(y-3\right)\left(y-5\right)\)
\(3^x+111=\left(y-3\right)\left(y-5\right)\)
\(3^x+111=y\left(y-5\right)-3\left(y-5\right)\)
\(3^x+111=y^2-5y-3y+15\)
\(3^x+111=y^2-8y+15\)
\(3^x+111-15=y^2-8y\)
\(3^x+96=y^2-8y\)
\(3\left(3^{x-1}+32\right)=y\left(y-8\right)\)
=> \(\hept{\begin{cases}y=3\\3^{x-1}+32=y-8\end{cases}}\)hoặc \(\hept{\begin{cases}y-8=3\\3^{x-1}+32=y\end{cases}}\)
=> \(\hept{\begin{cases}y=3\\3^{x-1}+32=3-8=-5\end{cases}}\)hoặc \(\hept{\begin{cases}y=3+8=11\\3^{x-1}+32=11\end{cases}}\)
=> \(\hept{\begin{cases}y=3\\3^{x-1}=-5-32=-37\end{cases}}\)hoặc \(\hept{\begin{cases}y=11\\3^{x-1}=11-32=-21\end{cases}}\)
.............................................................................................................................................................
=> \(x,y\in\varnothing\)
.............................................................................................................................................................
hình như mình làm lộn rồi .............................
cái chỗ => ấy mình lộn
SORRY
Tìm mọi cặp số nguyên dương x,y thỏa mãn
\(x^4+\left(x+1\right)^4=y^2+\left(y+1\right)^2\)
1. Cho số thực x. CMR: \(x^4+5>x^2+4x\)
2. Cho số thực x, y thỏa mãn x>y. CMR: \(x^3-3x+4\ge y^3-3y\)
3. Cho a, b là số thực dương thỏa mãn \(a^2+b^2=2\). CMR: \(\left(a+b\right)^5\ge16ab\sqrt{\left(1+a^2\right)\left(1+b^2\right)}\)