Chứng minh rằng: Số có dạng 20222022...2022 luôn chia hết cho 2023
chứng minh rằng tồn tại số có dạng 2023^n-1 chia hết cho 2022 (với n thuộc N*)
Lời giải:
Cho $n=1$ thì $2023^n-1=2023^1-1=2022\vdots 2022$
Thực chất là với mọi số $n\in\mathbb{N}$ thì $2023^n-1\vdots 2022$
Chứng tỏ rằng tồn tại số có dạng 202220222022....2022 chia hết cho 2023.
bn cho mình gửi sắp đến thi học kì 2 rồi. đây là những món quà mà bn sẽ nhận đc:
1: áo quần
2: tiền
3: đc nhiều người yêu quý
4: may mắn cả
5: luôn vui vẻ trong cuộc sống
6: đc crush thích thầm
7: học giỏi
8: trở nên xinh đẹp
phật sẽ ban cho bn những điều này nếu cậu gửi tin nhắn này cho 25 người, sau 3 ngày bn sẽ có những đc điều đó. nếu bn ko gửi tin nhắn này cho 25 người thì bn sẽ luôn gặp xui xẻo, học kì 2 bn sẽ là học sinh yếu và bạn bè xa lánh( lời nguyền sẽ bắt đầu từ khi đọc) ( mình
cũng bị ép);-;
chứng minh rằng: 5^2022+2^2023 chia hết cho 3
Tham khảo
\(\text{+)}\)Ta có:\(5\equiv-1\left(mod3\right)\)
\(\Rightarrow5^{2022}\equiv\left(-1\right)^{2022}\left(mod3\right)\left(1\right)\)
\(\text{+)}\)Ta có:\(2\equiv-1\left(mod3\right)\)
\(\Rightarrow2^{2023}\equiv\left(-1\right)^{2023}\left(mod3\right)\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\Rightarrow5^{2022}+5^{2023}\equiv0\left(mod3\right)\)
Vậy...
Cho 𝐵 = 1.2.3. . . .2022. (1 + 1/2 + 1/3 +⋅⋅⋅ + 1/2022 ) Chứng minh rằng B chia hết cho 2023.
chứng minh rằng B= 5 mũ 2024 + 5 mũ 2023 + 5 mũ 2022 chia hết cho 31 :((
Ta có \(B=5^{2024}+5^{2023}+5^{2022}\)
\(B=5^{2022}\left(5^2+5+1\right)\)
\(B=31.5^{2022}⋮31\)
Vậy \(B⋮31\) (đpcm)
Cho x,y ϵ Z thoả mãn x.y=\(^{2023^{2022}}\) . Chứng minh: \(^{x^{2022}}\) - \(y^{2022}\) chia hết cho 24
A= 75.( 4^2023 + 4^2022 +...+ 4^2 + 5) + 25. Chứng minh rằng A chia hết cho 4^2024. Giúp mình với ạ, cảm ơn nhiều.
Chứng minh rằng số có dạng abcabc luôn chia hết cho 91.
\(\overline{abcabc}\)
\(=10^5\cdot a+10^4\cdot b+10^3\cdot c+10^2\cdot a+10^1\cdot b+10^0\cdot c\)
\(=100100\cdot a+10010b+1001c\)
\(=91\left(1100a+110b+11c\right)⋮91\)
chứng minh tồn tại số có dạng 20232023...2023 chia hết cho 19
Để chứng minh rằng tồn tại một số có dạng 20232023...2023 chia hết cho 19, ta sẽ chứng minh rằng tồn tại một số nguyên n sao cho số nguyên s có dạng sau chia hết cho 19:
s = 20232023...2023 (n chữ số 2023)
Ta có thể biểu diễn s dưới dạng:
s = 2023 x 10⁰ + 2023 x 10¹ + 2023 x 10² + ... + 2023 x 10^(n-1)
= 2023 x (10⁰ + 10¹ + 10² + ... + 10^(n-1))
Để dễ dàng chứng minh, ta sẽ tính tổng sau đây:
10⁰ + 10¹ + 10² + ... + 10^(n-1) = (10⁰ - 1) + (10¹ - 1) + (10² - 1) + ... + (10^(n-1) - 1) + n
= 111...1 (n số 1) + n
= (n + 1) x 111...1 (n số 1)
Do đó:
s = 2023 x (n + 1) x 111...1 (n số 1)
Ta có thể dễ dàng thấy rằng 19 chia hết cho 2023, do đó ta chỉ cần chứng minh rằng (n + 1) x 111...1 (n số 1) chia hết cho 19.
Ta có:
111...1 (n số 1) = (10⁰ + 10¹ + 10² + ... + 10^(n-1)) / 9
= [(10⁰ - 1) + (10¹ - 1) + (10² - 1) + ... + (10^(n-1) - 1)] / 9
= [(n + 1) x 111...1 (n số 1)] / 9
Do đó:
s = 2023 x (n + 1) x [(n + 1) x 111...1 (n số 1)] / 9
= 19 x 1064819 x (n + 1) x [(n + 1) x 111...1 (n số 1)] / (19 x 9)
Như vậy, ta chỉ cần chọn một số nguyên n sao cho (n + 1) x 111...1 (n số 1) chia hết cho 19. Vì 19 là số nguyên tố và không chia hết cho 3, nên ta có thể chọn n = 18, để (n + 1) x 111...1 (n số 1) chia hết cho 19. Vì vậy, tồn tại một số có dạng 20232023...2023 (18 chữ số 2023) chia hết cho 19.
bạn ơi tại sao 202320323...2023 lại được biểu diễn như câu trả lời
vd 2023 nhân 10^0 +2023 nhân 10^1=22253