Tìm a thuộc N để 3^a + 72 là số chính phương
tìm số tự nhiên n để A là số chính phương:
A=3n+72
1) CMR: A= 999...9800...0 1 là số chính phương
n chữ số 9 n c/số 0
2) Tìm n thuộc N để n^2+5 là số chính phương
3) Tìm n thuộc N* để n^2-2n+8 là số chính phương
Tìm a thuộc N để (23-a)(a-3) là 1 số chính phương
Tìm a thuộc N để 13a + 3 là số chính phương
Tìm n thuộc N để A=1!+2!+3!+...+n! là số chính phương .
Vì n thuộc N* => n thuộc {1;2;3;4;...}
Ta xét các trường hợp sau :
+ nếu n=1
Khi đó : A=1!=1=12-là số chính phương ( thỏa mãn )
+ nếu n=2
Khi đó : A=1!+2!=1+1x2=3-không là số chính phương (loại)
+Nếu n=3
khi đó : A=1!+2!+3!=1+1x2+1x2x3=1+2+6=9=32-là số chính phương (thỏa mãn)
+Với n>hoặc=4
Ta có : A= 1!+2!+3!+4!=1+1x2+1x2x3+1x2x3x4=1+2+6+24=33 có chữ số tận cùng là 3
Mà 5!;6!;7!;...;n! có chữ số tận cùng là 0
=>A=1!+2!+3!+4!+...+n! có chữ số tận cùng là 3(với n>hoặc = 4)
Mà số chính phương không thể có chữ số tận cùng là 3
Nên A=1!+2!+3!+4!+...+n!không là số chính phương (với n> hoặc =4)
Vậy n thuộc { 1;3 } thì A=1!+2!+3!+...+n! là số chính phương
(+) Với n = 1
=> A=1 ( là số chính phương )
(+) Với n = 2
=> A = 3 ( không phải là số chính phương )
(+) ......
(+) Với \(n\ge4\)
Ta có : 1! + 2! + 3! + 4! = 33 có tận cúng là mà .
Mặt khhacs các số 5! ; 6! ; ... luôn có tận cùng = 0
=> A có tận cung là 3
Mà số chính phương không bao giờ có tận cùng là 3 .
=> n = 1
Vậ n = 1
Với n =1 thì 1! =1=1^2 là số chính phương
Với n=2 thì 1! +2! =3 không là số chính phương
Với n=3 thì 1!+2!+3!=1+1.2 +1.2..3=9=3^2 là số chính phương
n=4 tận cùng là 3 nên không là số chính Phương
Vậy N=1 và 3
Tìm a thuộc N để 13a+3 là số chính phương
Để 13a+3 là số chính phương đặt 13.a + 3 = k² (k ∈ N) => a=1
<=>13.1+3=k2
13+3=k2
16=k2
=>k=4
=>a=16
a = 1
Khi đó 13a + 3 = 13 . 1 +3 = 16 = 42 (là số chính phương)
tích nha.
nếu a bé nhất thì a=1
ta có: a=1 thì 13x1+3=13+3=16=4^2(số chính phương)
ủng hộ nhé
Bài 1: Tìm n thuộc N để:
A= n^2+9 là số chính phương
B= n^2+2014 là số chính phương
C= n(n+3) là số chính phương
Bài 2: CMR: a^2-1 chia hết cho 24 với a là số nguyên tố >3
Bài 3: CMR: n(2n+1)(7n+1) chia hết cho 6 với mọi n thuộc N
a, Vì n \(\in\)N => n2 là số chính phương
mà 9 = 32 là số chính phương
=> n2 + 9 là số chính phương.
Vậy A = n2 + 9 là số chính phương.
CHÚC BẠN HỌC TỐT!!!!
Vì A=n2+9 là SCP
Đặt A=n2+9=m2 (m thuộc N)
<=> 9=m2-n2
<=> 9=(m-n)(m+n)
Vì n thuộc N => m-n thuộc Z, m+n thuộc N
=> m-n,m+n thuộc Ư(9)
mà m+n>m-n
nên \(\left\{{}\begin{matrix}m+n=9\\m-n=1\end{matrix}\right.\)<=>\(\left\{{}\begin{matrix}m=5\\n=4\end{matrix}\right.\)(thỏa mãn)
Vậy A là SCP <=>n=4
Tìm n thuộc N để :
a;2^n + 1 là số chính phương
b;3^6 + 3^n là số chính phương
c; n^2 + 2002 là số chính phương
d; n + 1945 và n + 2004 là số chính phương
\(a^2+12=n^2\)
\(\Leftrightarrow n^2-a^2=12\)
\(\Leftrightarrow\left(n-a\right)\left(n+a\right)=12\)(1)
Có \(n-a+n+a=2n\)là số chẵn nên \(n-a,n+a\)cùng tính chẵn lẻ.
mà \(n-a\le n+a\)nên từ (1) suy ra
\(\hept{\begin{cases}n-a=2\\n+a=6\end{cases}}\Leftrightarrow\hept{\begin{cases}n=4\\a=2\end{cases}}\)
Vậy \(a=2\)thỏa mãn ycbt.