Tính giá trị biểu thức sau
\(M=16\frac{3}{31}-\left(\frac{19}{28}+10\frac{3}{31}\right)\)
Tính giá trị biểu thức:
\(A=\left[\frac{1\frac{11}{31}.4\frac{3}{7}-\left(15-6\frac{1}{3}.\frac{2}{19}\right)}{4\frac{5}{6}+\frac{1}{6}\left(12-5\frac{1}{3}\right)}.\left(-1\frac{14}{93}\right)\right].\frac{31}{50}\)
\(A=\left[\frac{1\frac{11}{31}\cdot4\frac{3}{7}-\left(15-6\frac{1}{3}\cdot\frac{2}{19}\right)}{4\frac{5}{6}+\frac{1}{6}\left(12-5\frac{1}{3}\right)}\cdot\left(-1\frac{14}{93}\right)\right]\cdot\frac{31}{50}\)
\(A=\left[\frac{\frac{42}{31}\cdot\frac{31}{7}-\left(15-\frac{19}{3}\cdot\frac{2}{19}\right)}{4\frac{5}{6}+\frac{1}{6}\left(12-\frac{16}{3}\right)}\cdot\left(-\frac{107}{93}\right)\right]\cdot\frac{31}{50}\)
\(A=\left[\frac{6-\left(15-\frac{2}{3}\right)}{\frac{29}{6}+\frac{10}{9}}\cdot\left(-\frac{107}{93}\right)\right]\cdot\frac{31}{50}\)
\(A=\left[\frac{6-\frac{43}{3}}{\frac{107}{18}}\cdot\left(-\frac{107}{93}\right)\right]\cdot\frac{31}{50}\)
\(A=\left[\frac{-\frac{25}{3}}{\frac{107}{18}}\cdot\left(-\frac{107}{93}\right)\right]\cdot\frac{31}{50}\)
\(A=\frac{50}{31}\cdot\frac{31}{50}=1\)
Bài 4 :
a) Tính giá trị của biểu thức :
\(A=\left(\frac{1\frac{11}{31}\cdot4\frac{3}{7}-\left(15-6\frac{1}{3}\cdot\frac{2}{19}\right)}{4\frac{5}{6}+\frac{1}{6}\left(12-5\frac{1}{3}\right)}\cdot\left(-1\frac{14}{93}\right)\right)\cdot\frac{31}{50}\)
b) Chứng tỏ rằng : \(B=1-\frac{1}{2^2}-\frac{1}{3^2}-\frac{1}{3^2}-...-\frac{1}{2004^2}>\frac{1}{2004}\)
Tính giá trị của biểu thức sau một cách hợp lí:
\(B = \left( {\frac{{ - 3}}{{13}}} \right) + \frac{{16}}{{23}} + \left( {\frac{{ - 10}}{{13}}} \right) + \frac{5}{{11}} + \frac{7}{{23}}\)
\(\begin{array}{l}B = \left( {\frac{{ - 3}}{{13}}} \right) + \frac{{16}}{{23}} + \left( {\frac{{ - 10}}{{13}}} \right) + \frac{5}{{11}} + \frac{7}{{23}}\\ = \left[ {\left( {\frac{{ - 3}}{{13}}} \right) + \left( {\frac{{ - 10}}{{13}}} \right)} \right] + \left[ {\frac{{16}}{{23}} + \frac{7}{{23}}} \right] + \frac{5}{{11}}\\ = - 1 + 1 + \frac{5}{{11}}\\ = \frac{5}{{11}}\end{array}\)
`B= ( (-3)/13 + (-10)/13) + (16/23 + 7/23 ) +5/11`
`B= -13/13 + 23/23 +5/11`
`B=-1+1+5/11`
`B=0+5/11`
`B=5/11`
\(B=\left(-\dfrac{3}{13}\right)+\dfrac{16}{23}+\left(-\dfrac{10}{13}\right)+\dfrac{5}{11}+\dfrac{7}{23}\)
\(B=\left[\left(-\dfrac{3}{13}\right)+\left(-\dfrac{10}{13}\right)\right]+\left(\dfrac{16}{23}+\dfrac{7}{23}\right)+\dfrac{5}{11}\)
\(B=\left(-1\right)+1+\dfrac{5}{11}\)
\(B=\dfrac{5}{11}\)
Cho biểu thức: \(M=\left(\frac{\left(a-1\right)^2}{31+\left(a-1\right)^2}-\frac{1-2a^2+4a}{a^3-1}+\frac{1}{a-1}\right):\frac{a^3+4a}{4a^2}\)
a) Rút gọn M
b) Tìm a để M > 0
c) Tìm giá trị của a để biểu thức M đạt giá trị lớn nhất. Tìm giá trị nhỏ nhất đó
Giúp mik với
Tính giá trị của các biểu thức:
a. \(\frac{3^{17}.81^{11}}{27^{10}.9^{15}}\)
b. \(\frac{9^2.2^{11}}{16^2.6^3}\)
c. \(\frac{2^{10}.3^{31}+2^{40}.3^6}{2^{11}.3^{31}+2^{41}.3^6}\)
d. \(a\left(-b\right)\left(-a\right)^2\left(-b\right)^3\left(-a\right)^3\left(-b\right)^4\)
e. \([-\left(-a\right)^3]\left(-a^2\right)^3.[\left(-b\right)^2]^3.[-\left(-b\right)^4]\)
a) \(\frac{3^{17}.81^{11}}{27^{10}.9^{15}}=\frac{3^{17}.\left(3^4\right)^{11}}{\left(3^3\right)^{10}.\left(3^2\right)^{15}}=\frac{3^{17}.3^{44}}{3^{30}.3^{30}}=\frac{3^{61}}{3^{60}}=3\)
b) \(\frac{9^2.2^{11}}{16^2.6^3}=\frac{\left(3^2\right)^2.2^{11}}{\left(2^4\right)^2.2^3.3^3}=\frac{3^4.2^{11}}{2^8.2^3.3^3}=\frac{3^4.2^{11}}{2^{11}.3^3}=3\)
c) \(\frac{2^{10}.3^{31}+2^{40}.3^6}{2^{11}.3^{31}+2^{41}.3^6}=\frac{2^{10}.3^{31}+2^{40}.3^6}{2.\left(2^{10}.3^{31}+2^{40}.3^6\right)}=\frac{1}{2}\)
Các bạn vào trang cá nhân của mik đi, có cái này hay lắm!!!
\(a)\frac{3^{17}.81^{11}}{27^{10}.9^{15}}=\frac{3^{17}.\left(3^4\right)^{11}}{\left(3^3\right)^{10}.\left(3^2\right)^{15}}=\frac{3^{17}.3^{44}}{3^{30}.3^{30}}=\frac{3^{61}}{3^{60}}=3\)
\(b)\frac{9^2.2^{11}}{16^2.6^3}=\frac{\left(3^2\right)^2.2^{11}}{\left(2^4\right)^2.2^3.3^3}=\frac{3^4.2^{11}}{2^{11}.3^3}=3\)
\(c)\frac{2^{10}.3^{31}+2^{40}.3^6}{2^{11}.3^{31}+2^{41}.3^6}=\frac{2^{10}.3^6\left(3^{25}+2^{30}\right)}{2^{11}.3^6\left(3^{25}+2^{30}\right)}=\frac{1}{2}\)
\(d)a\left(-b\right)\left(-a\right)^2\left(-b\right)^3\left(-a\right)^3\left(-b\right)^4\)
\(=\left[a\left(-a\right)^2\left(-a\right)^3\right]\left[\left(-b\right)\left(-b\right)^3\left(-b\right)^4\right]\)
\(=\left[a.a^2\left(-a\right)^3\right]\left[-b.b^4\left(-b\right)^3\right]=\left(-a^3.a^3\right)\left[\left(-b\right)^4.b^4\right]=-b^8\)
\(e)\left[-\left(-a\right)^3\right]\left(-a^2\right)^3\left[\left(-b\right)^2\right]^3\left[-\left(-b\right)^4\right]\)
\(=a^3\left(-a^6\right).b^6\left(-b^4\right)=-a^3.\left(-b^2\right)=a^3b^2\)
Câu 1. Tính hợp lý giá trị các biểu thức sau :
a. A = ( 689 - 31 ) - ( 269 - 131 )
b. B = \(\left(\frac{1}{2}+\frac{2016}{2017}+\frac{2017}{2018}+1\right)\times\left(\frac{2016}{2017}+\frac{2017}{2018}+\frac{3}{4}\right)-\left(\frac{1}{2}+\frac{2016}{2017}+\frac{2017}{2018}\right)\times\left(\frac{2016}{2017}+\frac{2017}{2018}+\frac{3}{4}+1\right)\)c. C = \(1-\frac{5}{6}+\frac{7}{12}-\frac{9}{20}+\frac{11}{30}-\frac{13}{42}+\frac{15}{56}-\frac{17}{72}+\frac{19}{90}\)
C\(\frac{1}{1}-\frac{1}{2.3}+\frac{1}{3.4}-\frac{1}{4.5}+\frac{1}{5.6}\)-\(\frac{1}{6.7}\)+\(\frac{1}{7.8}\)-\(\frac{1}{8.9}+\frac{1}{9.10}\)
c=\(\frac{1}{1}-\frac{1}{10}\)
c=\(\frac{9}{10}\)
còn a và b rễ lắm mình ko thích làm bài rễ đâu bạn cố chờ lời giải khác nhé!
Tính giá trị biểu thức: A=\(\frac{\left(1+17\right).\left(1+\frac{17}{2}\right).\left(1+\frac{17}{3}\right)....\left(1+\frac{17}{19}\right)}{\left(1+19\right).\left(1+\frac{19}{2}\right).\left(1+\frac{19}{3}\right)...\left(1+\frac{19}{17}\right).}\)
tính giá trị của các biểu thức sau
A = - 5,13 : \(\left(5\frac{5}{28}-1\frac{8}{9}\times1,25+1\frac{16}{63}\right)\)
B = \(\left(3\frac{1}{3}\times1,9+19,5:4\frac{1}{3}\right)\times\left(\frac{62}{75}-\frac{4}{25}\right)\)
Tính giá trị biểu thức: A=\(\frac{\left(1+17\right)\times\left(1+\frac{17}{2}\right)\times\left(1+\frac{17}{3}\right)....\left(1+\frac{17}{19}\right)}{\left(1+19\right)\times\left(1+\frac{19}{2}\right)\times\left(1+\frac{19}{3}\right)....\left(1+\frac{19}{17}\right)}\)