Cho x>y TM: x+y<=1 CMR: 1/x^2+y^2 = 1/xy>=6
Cho a,b,c >0 TM: a+b+c<=1 CMR: (1/a^2+bc) + (1/b^2+ac)+ 1/c^2+2ab >=9
Cho a,b>0 TM: a+b<=1 ;CMR: (1/a^b^2)+4b+1/ab>=7
Cho a,b>0 TM:a+b<=1. CMR: 1/1+a^2+b^2 +1/2ab >=8/3
Cho a,b,c>0 TM: a+b+c<=3.CMR: 1/a^2+b^2+c^2 +2009/ab+bc+ac >=670
Cho x>y TM: x+y<=1 CMR: 1/x^2+y^2 = 1/xy>=6
Cho a,b,c >0 TM: a+b+c<=1 CMR: (1/a^2+bc) + (1/b^2+ac)+ 1/c^2+2ab >=9
Cho a,b>0 TM: a+b<=1 ;CMR: (1/a^b^2)+4b+1/ab>=7
Cho a,b>0 TM:a+b<=1. CMR: 1/1+a^2+b^2 +1/2ab >=8/3
Cho a,b,c>0 TM: a+b+c<=3.CMR: 1/a^2+b^2+c^2 +2009/ab+bc+ac >=670
Cho x>y TM: x+y<=1 CMR: 1/x^2+y^2 = 1/xy>=6
Cho a,b,c >0 TM: a+b+c<=1 CMR: (1/a^2+bc) + (1/b^2+ac)+ 1/c^2+2ab >=9
Cho a,b>0 TM: a+b<=1 ;CMR: (1/a^b^2)+4b+1/ab>=7
Cho a,b>0 TM:a+b<=1. CMR: 1/1+a^2+b^2 +1/2ab >=8/3
Cho a,b,c>0 TM: a+b+c<=3.CMR: 1/a^2+b^2+c^2 +2009/ab+bc+ac >=670
Cho a/c=a-b/b-c (a,c khác 0. a-b khác 0; b-c khác 0).CMR 1/a + 1/a-b=1/b-c -1/c
\(\frac{1}{a}+\frac{1}{a-b}=\frac{1}{b-c}-\frac{1}{c}\Leftrightarrow\frac{1}{a-b}+\frac{1}{c}=\frac{1}{b-c}-\frac{1}{a}\)
\(\Leftrightarrow\frac{c+a-b}{\left(a-b\right)c}=\frac{a-b+c}{\left(b-c\right)a}\)(1)
Do \(\frac{a}{c}=\frac{a-b}{b-c}\Leftrightarrow a\left(b-c\right)=\left(a-b\right)c\)nên (1) đúng, đẳng thức được CM
Cho a,b,c khác 0 và 1/a + 1/b + 1/c = 1/a+b+c. CMR : (a+b)(b+c)(a+c)=0
Cho x>y TM: x+y<=1 CMR: 1/x^2+y^2 + 1/xy>=6
Cho a,b,c >0 TM: a+b+c<=1 CMR: (1/a^2+bc) + (1/b^2+ac)+ 1/c^2+2ab >=9
Cho a,b>0 TM: a+b<=1 ;CMR: (1/a^b^2)+ 4b + 1/ab>=7
Cho a,b>0 TM:a+b<=1. CMR: 1/1+a^2+b^2 + 1/2ab >=8/3
Cho a,b,c>0 TM: a+b+c<=3.CMR: 1/a^2+b^2+c^2 + 2009/ab+bc+ac >=670
Cho a,b,c khác 0 và a+b+c=0. CMR 1/b²+c²-a² +1/c²+a²-b² +1/a²+b²-c²
a)cho a,b,c >0
CMR (a+1)(b+1)(a+c)(b+c)>=16abc
b)cho x,y,z>0 CMR x+y/z+y+z/x+z+x/y>= 6
c)cho a>=1, b>=1 CMR a căn b-1+b căn a-1 <=ab
Cho a,b,c # 0 và a+b+c#0 thỏa mãn 1/a+1/b+1/c=1/a+b+c cmr 1/a^2017+1/b^2017+1/c^2017=1/a^2017+b^2017+c^2017
Lời giải:
$\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}$
$\Leftrightarrow (\frac{1}{a}+\frac{1}{b})+(\frac{1}{c}-\frac{1}{a+b+c})=0$
$\Leftrightarrow \frac{a+b}{ab}+\frac{a+b}{c(a+b+c)}=0$
$\Leftrightarrow (a+b)(\frac{1}{ab}+\frac{1}{c(a+b+c)})=0$
$\Leftrightarrow (a+b).\frac{ab+c(a+b+c)}{abc(a+b+c)}=0$
$\Leftrightarrow \frac{(a+b)(c+a)(c+b)}{abc(a+b+c)}=0$
$\Leftrightarrow (a+b)(c+a)(c+b)=0$
$\Leftrightarrow a+b=0$ hoặc $c+a=0$ hoặc $c+b=0$
Không mất tổng quát giả sử $a+b=0$
$\Leftrightarrow a=-b$.
Khi đó:
$\frac{1}{a^{2017}}+\frac{1}{b^{2017}}+\frac{1}{c^{2017}}=\frac{1}{(-b)^{2017}}+\frac{1}{b^{2017}}+\frac{1}{c^{2017}}$
$=\frac{-1}{b^{2017}}+\frac{1}{b^{2017}}+\frac{1}{c^{2017}}$
$=\frac{1}{c^{2017}}=\frac{1}{(-b)^{2017}+b^{2017}+c^{2017}}$
$=\frac{1}{a^{2017}+b^{2017}+c^{2017}}$ (đpcm)
Lần sau bạn lưu ghi đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để được hỗ trợ tốt nhất. Mọi người đọc đề của bạn dễ hiểu thì cũng sẽ dễ giúp hơn.
cho â ,b ,c khác 0 và 1/a + 1/b +1/c = 1 / a +b+c cmr (a+b)(b+c)(c+a)=0
Giải:
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a+b+c}\)
\(\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}-\dfrac{1}{a+b+c}=0\)
\(\Leftrightarrow\dfrac{a+b}{ab}+\dfrac{1}{c}-\dfrac{1}{a+b+c}=0\)
\(\Leftrightarrow-\dfrac{a+b}{ab}-\dfrac{1}{c}+\dfrac{1}{a+b+c}=0\)
\(\Leftrightarrow-\dfrac{a+b}{ab}-\dfrac{a+b}{c\left(a+b+c\right)}=0\)
\(\Leftrightarrow\left(a+b\right)\left(\dfrac{1}{ab}+\dfrac{1}{ac+bc+c^2}\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)
Vậy ...
Ta có:
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a+b+c}\)
⇔ bc(a+b+c) + ac(a+b+c) + ab(a+b+c) = abc (quy đồng và khử mẫu vì a,b,c ≠ 0)
\(\Leftrightarrow abc+b^2c+bc^2+a^2c+abc+ac^2+a^2b+ab^2+abc=abc\)
\(\Leftrightarrow bc\left(b+c\right)+a\left(c^2+2bc+b^2\right)+a^2\left(b+c\right)=0\)(chuyển abc ở vế phải sang chỉ còn 2abc rồi đặt nhân tử chung)
\(\Leftrightarrow\left(b+c\right)\left(bc+ab+ac+a^2\right)=0\)
\(\Leftrightarrow\left(b+c\right)\left[b\left(a+c\right)+a\left(a+c\right)\right]=0\)
\(\Leftrightarrow\left(b+c\right)\left(a+c\right)\left(a+b\right)=0\left(đpcm\right)\)