Tính:
\(\frac{2^2}{1.3}\).\(.\frac{3^2}{2.4}\)\(.\frac{4^2}{3.5}\)\(....\)\(\frac{50^2}{49.51}\)
Tính
\(\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}.......\frac{50^2}{49.51}\)
\(\text{= 2/1 . 2/3 . 3/2 . 3/4 . 4/3 . 4/5 ....... 50/49.50/51 }\)
Dùng phương pháp khử liên tiếp ta có
\(=\frac{2}{1}-\frac{50}{51}=\frac{52}{51}\)
Tính giá trị biểu thức sau: N = \(\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}.....\frac{50^2}{49.51}\)
\(\Leftrightarrow N=\frac{\left(2.3.4....50\right)\left(2.3.4...........50\right)}{\left(1.2.3.........49\right)\left(3.4.5...........51\right)}=\frac{50.2}{51}=\frac{100}{51}\)
Tính giá trị biểu thức sau: N = \(\frac{2^2}{1.3}+\frac{3^2}{2.4}+\frac{4^2}{3.5}....+\frac{50^2}{49.51}\)
\(\frac{2^2}{1.3}+\frac{3^2}{2.4}+\frac{4^2}{3.5}+....+\frac{50^2}{49.51}\)
\(=\frac{2^2-1}{1.3}+\frac{3^2-1}{2.4}+....+\frac{50^2-1}{49.51}+\frac{1}{1.3}+\frac{1}{2.4}+....+\frac{1}{49.51}\)
\(=\frac{1}{2}.\left(1+1+...+1\right)+\frac{1}{1}-\frac{1}{3}+\frac{1}{2}-\frac{1}{4}+\frac{1}{3}-\frac{1}{5}+....+\frac{1}{49}-\frac{1}{51}\)
Tự làm tiếp :))
tớ nhầm đoạn này tí :((
\(=\left(1+1+....+1\right)+\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{2}-\frac{1}{4}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{49}-\frac{1}{51}\right)\)(49 chữ số 1)
\(=49+\frac{1}{2}.\left[\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{49}\right)-\left(\frac{1}{3}+\frac{1}{4}+...+\frac{1}{51}\right)\right]\)
\(=49+\left(\frac{3}{2}-\frac{1}{50}-\frac{1}{51}\right):2\)Tự tính
sao bạn Khuyển Dạ Xoa làm 2 bài vậy?
\(\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}...\frac{50^2}{49.51}\) tính
giải giúp mình nha
\(\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}.,,\frac{50^2}{49.51}\)
=\(\frac{2.2}{1.3}.\frac{3.3}{2.4}.\frac{4.4}{3.5}.,,\frac{50.50}{49.51}\)
=\(\frac{\left(2.3.4...50\right).\left(2.3.4...50\right)}{\left(1.2.3....49\right).\left(3.4.5....51\right)}\)
=\(\frac{50.2}{1.51}\)
=\(\frac{100}{51}\)
\(=\frac{2.3.4...50}{1.2.3...49}.\frac{2.3.4...50}{3.4.5...51}=50.\frac{2}{51}=\frac{100}{51}\)
Tính giá trị biểu thức sau: N = \(\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}.....\frac{50^2}{49.51}\)
tim x biet
a)\(\frac{3}{4}.\frac{8}{9}.\frac{15}{16}...\frac{2499}{2500}\)
b) \(\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}...\frac{50^2}{49.51}\)
Tính:
\(\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}...\frac{50^2}{49.51}\)
Kết quả là \(\frac{100}{51}\) nhưng tớ cần cách làm. Mong mọi người giúp tớ nhá, tớ sẽ tick cho, cảm ơn nhiều ạ =))))))))))))))))))))))
Có\(\frac{2^2}{1.3}.\frac{3^2}{2.4}...\frac{50^2}{49.51}=\frac{2.2}{1.3}.\frac{3.3}{2.4}...\frac{50.50}{49.51}\)
= \(\frac{\left(2.3.4...50\right).\left(2.3.4...50\right)}{\left(1.2.3...49\right).\left(3.4.5...51\right)}\)
= \(\frac{50.2}{1.51}\)
= \(\frac{100}{51}\)
=2.2/1.3x3.3/2.4x..........x50.50/49.51
=2.2.3.3.4.4........50.50/1.3.2.4.3.5.......49.51
=2.50/1.51
=100/51
Tính: P=\(\left(1+\frac{1}{1.3}\right)\left(1+\frac{1}{2.4}\right)\left(1+\frac{1}{3.5}\right)...\left(1+\frac{1}{49.51}\right)+\frac{2}{51}\)
TÍNH:\(\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}.\frac{5^2}{4.6}\).
\(A=\frac{2^2}{1.3}\cdot\frac{2^2}{2.4}\cdot\frac{2^2}{3.5}\cdot\frac{2^2}{4.6}\)
\(A=\frac{4}{3}\cdot\frac{1}{2}\cdot\frac{4}{15}\cdot\frac{1}{6}\)
\(A=\frac{4.1.4.1}{3.2.15.6}\)
\(A=\frac{4}{135}\)
\(\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}.\frac{5^2}{4.6}\)
\(=\frac{2.2}{1.3}.\frac{3.3}{2.4}.\frac{4.4}{3.5}.\frac{5.5}{4.6}\)
\(=\frac{2.3.4.5}{1.2.3.4}.\frac{2.3.4.5}{3.4.5.6}\)
\(=\frac{5}{1}.\frac{2}{6}\)
\(=\frac{5}{1}.\frac{1}{3}\)
\(=\frac{5}{3}\)