Trong mặt phẳng Oxy, cho hình vuông ABCD, F(\(\frac{11}{3}\);3) là trung điểm AD, EK: 19x-8y-18=0 với E là trung điểm AB, K thuộc cạnh CD sao cho KD=3KC
a) Tìm tọa độ điểm E (xE<3)
b) Viết phương trình đường thẳng AC
trong mặt phẳng oxy cho hình vuông ABCD có tâm I(2:2) là giao điểm hai đường chéo. Lấy M thuộc DC sao cho DC=4DM , biết đường thẳng AM có phương trình :7x + 6y -11= 0. Viết phương trình đường tròn (C) ngoại tiếp hình vuông ABCD
Trong mặt phẳng tọa độ Oxy, cho 3 điểm có A(-3;-2); B(3;6); C(11;0). Tìm tọa độ điểm D để tứ giác ABCD là hình vuông
trong mặt phẳng tọa độ oxy cho hình vuông abcd biết đường thẳng delta: x-2y-3=0 và I(0,1) là giao điểm của hai đường chéo AC và BD . Tính S của hình vuông
Đường thẳng delta ở đây đóng vai trò là gì bạn?
Trong mặt phẳng tọa độ Oxy, cho hình vuông ABCD có A(1; -1) và B(3; 0). Tìm tọa độ điểm D, biết D có tung độ âm.
A.D(0; -1)
B. D( 2; -3)
C. D( 2; -3); D(0; 1)
D. D( -2; -3)
Gọi C= (x, y). Ta có A B → = 2 ; 1 B C → = x − 3 ; y .
Vì ABCD là hình vuông nên ta có A B → ⊥ B C → A B = B C
⇔ 2 x − 3 + 1. y = 0 x − 3 2 + y 2 = 5 ⇔ y = 2 3 − x 5 x − 3 2 = 5 ⇔ y = 2 3 − x x − 3 2 = 1 ⇔ x = 4 y = − 2 hoặc x = 2 y = 2 .
Với C 1 4 ; − 2 ta tính được đỉnh D 1 2 ; − 3 : thỏa mãn.
Với C 2 2 ; 2 ta tính được đỉnh D 2 0 ; 1 : không thỏa mãn.
Chọn B.
Trong mặt phẳng Oxy, cho hình vuông ABCD có tâm I. Biết E(2;3), F(-2;1) lần luợt là trung điểm của BC, ID và điểm A có tung độ dương. Tìm toạ độ trọng tâm G của tam giác ABC
Trong mặt phẳng tọa độ Oxy, cho 3 điểm có A(-3;-2); B(3;6); C(11;0). Tìm tọa độ điểm D để tứ giác ABCD là hình vuông
Cho em hỏi bài này ạ. Trong mặt phẳng tọa độ Oxy cho hình vuông ABCD. Điểm E (2, 3) thuộc BD. Các điểm H (-2, 3) và K (-2,4) lần lượt là hình chiều vuông góc của điểm E trên AB và AD. Xác định tọa độ các đỉnh của hình vuông ABCD
bài này 2 cách làm. làm . A(-2;4) B(-2;-1) C(3;-1) D(3;-1)
đường thẳng AB qua H và vuông HE nên ptdt AB : x+2=0
đường thẳng AD qua K và vuông KE nên ptdt AD : -y+4=0
Tọa độ A là nghiệm của hệ : \(\begin{cases}x+2=0\\-y+4=0\end{cases}\) \(\Leftrightarrow\begin{cases}x=-2\\y=4\end{cases}\) vậy A(-2;4)
\(\overrightarrow{HE}=\left(4;0\right)\Rightarrow HE=AK=4;\overrightarrow{KE}=\left(0;-1\right)\Rightarrow KE=1\) . Vậy \(\overrightarrow{AK}=\frac{4}{5}\overrightarrow{AD}\) , có \(\overrightarrow{AK}=\left(4;0\right);\overrightarrow{AD}=\left(x_D+2;y_D-4\right)\) ta có hê : \(\begin{cases}4=\frac{4}{5}\left(x_D+2\right)\\0=\frac{4}{5}\left(y_D-4\right)\end{cases}\) \(\Leftrightarrow\begin{cases}x=3\\y=4\end{cases}\)Vậy D(3;4)
ptdt DE đi qua D và E nên ta có ptdt: x-y+1=0
Tọa độ điểm B là nghiêm của hệ phương trình đường thẳng DE và AB: \(\begin{cases}x-y=-1\\x=-2\end{cases}\) \(\Leftrightarrow\begin{cases}x=-2\\y=-1\end{cases}\) Vậy B(-2;-1)
Goi O(xo ;yo) là giao điểm của BD và AC. ta có : \(\begin{cases}x_o=\frac{-2+3}{2}=\frac{1}{2}\\y_o=\frac{-1+4}{2}=\frac{3}{2}\end{cases}\) Vậy O(\(\frac{1}{2};\frac{3}{2}\)) . O là trung điểm của AC nên C(3;-1)
Trong mặt phẳng Oxy, cho bốn điểm \(A(2;1),B(1;4),C(4;5),D(5;2)\)
a) Chứng minh ABCD là một hình vuông
b) Tìm tọa độ tâm I của hình vuông ABCD
a) Ta có: \(\overrightarrow {AB} = ( - 1;3),\overrightarrow {BC} = (3;1),\overrightarrow {CD} = (1; - 3),\overrightarrow {DA} = ( - 3; - 1)\)
Suy ra \(AB = BC = CD = DA = \sqrt {10} \)
Mặt khác \(\overrightarrow {AB} .\overrightarrow {BC} = ( - 1).3 + 3.1 = 0 \Rightarrow AB \bot BC\)
Vậy ABCD là hình vuông
b) Ta có ABCD là hình vuông, nên tâm I là trung điểm của đoạn thẳng AC
Vậy tọa độ điểm I là \(I(3;3)\)
Trong mặt phẳng Oxy, cho hình vuông ABCD có đình M(-–-3;5), tâm I thuộc đường thẳng d : y =−x+5 và diện tích của hình vuông ABCD bằng 25 . Tim tọa độ các đỉnh của hình vuông ABCD, biết rằng tâm I có hoành độ dương