Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vanh ^^
Xem chi tiết

\(\dfrac{2+3}{x}hay2+\dfrac{3}{x}\)  vậy

Trọng Messi
Xem chi tiết
Cuong Dang
Xem chi tiết
Nguyễn thành Đạt
Xem chi tiết
Lê Khánh Huyền
Xem chi tiết
Nguyễn Linh Chi
4 tháng 12 2019 lúc 0:58

Trả lời:

Khách vãng lai đã xóa
Minz Ank
Xem chi tiết
Nguyễn Việt Lâm
5 tháng 3 2023 lúc 16:19

\(\dfrac{x}{y}=\dfrac{x+y}{y+z}=\dfrac{y}{z}\Rightarrow xz=y^2\)

\(\left(y+2\right)\left(4xz+6y-3\right)=n^2\)

\(\Rightarrow\left(y+2\right)\left(4y^2+6y-3\right)=n^2\)

Gọi \(d=ƯC\left(y+2;4y^2+6y-3\right)\)

\(\Rightarrow4y^2+6y-3-\left(y+2\right)\left(4y-2\right)⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\)

\(\Rightarrow y+2\) và \(4y^2+6y-3\) nguyên tố cùng nhau

Mà \(\left(y+2\right)\left(4y^2+6y-3\right)\) là SCP \(\Rightarrow y+2\) và \(4y^2+6y-3\) đồng thời là SCP

\(\Rightarrow4y^2+6y-3=k^2\)

\(\Leftrightarrow\left(4y+3\right)^2-21=\left(2k\right)^2\)

\(\Rightarrow\left(4y+3-2k\right)\left(4y+3+2k\right)=21\)

Giải pt ước số trên ra \(y=2\) là số nguyên dương duy nhất thỏa mãn

Thế vào \(xz=y^2=4\Rightarrow\left(x;z\right)=\left(1;4\right);\left(4;1\right);\left(2;2\right)\)

Vậy \(\left(x;y;z\right)=\left(1;2;4\right);\left(4;2;1\right);\left(2;2;2\right)\)

lê diệu anh
Xem chi tiết
NeverGiveUp
29 tháng 9 lúc 17:39

PT\(\Leftrightarrow x^2-x+1=xy-2y\)

\(\Leftrightarrow x^2-2x+x-2+3=y(x-2)\)

\(\Leftrightarrow y\left(x-2\right)-x^2+2x-x+2=3\)

\(\Leftrightarrow y\left(x-2\right)-\left(x+1\right)\left(x-2\right)=3\)

\(\Leftrightarrow\left(x-2\right)\left(y-x-1\right)=3\) (*)

Vì \(\) \(x,y\in Z\) nên \(\begin{cases}x-2\in Z\\ y-x-1\in Z\end{cases}\)

=>Để (*) xảy ra thì tích của 2 biểu thức phải là tích của 2 ước số nguyên của 3

Đến đây bạn thay \(\left(x-2;y-x-1\right)\in{ ( 1 , 3 ) , ( 3 , 1 ) , ( - 1 , - 3 ) , ( - 3 , - 1 ) }\)

\(\Rightarrow(x-2;y-x-1)\in{(1;3),(3;1),(-1;-3),(-3;-1)}\)

\((x;y)\in{(3;7),(5;7),(1;-1),(-1;-1)}\)

lê diệu anh
Xem chi tiết
Minh Hiếu
26 tháng 9 lúc 20:18

Lương Khánh Nhật Minh
Xem chi tiết