Tìm tất cả các số nguyên dương x,y thoả mãn: 9/xy-1/y=2+3/x
Dấu / là biểu thị phân số
Tìm tất cả các số nguyên dương x,y thoả mãn: 9/xy-1/y=2+3/x
Dấu / là biểu thị phân số
\(\dfrac{2+3}{x}hay2+\dfrac{3}{x}\) vậy
Tìm tất cả các cặp số nguyên dương (x;y) thoả mãn
2x^2-xy-x-2y+1=0
1 Tìm tất cả các số nguyên dương m,n thoả mãn \(9^m-3^m=n^4+2n^3+n^2+2n\)
2 Cho hai số nguyên dương x,y thoả mãn \(\left(x+y\right)^2+3x+y+1\) là số chính phương. CMR x=y.
Tìm tất cả các số nguyên dương \(x;y;z\) thoả mãn : \(3^x+2^y=1+2^z\)
Tìm tất cả các số nguyên x,y thoả mãn x2-xy=5x-4y-9
Tìm tất cả các bộ số nguyên dương (x;y;z) thoả mãn \(\dfrac{x}{y}=\dfrac{y+x}{y+z}\) và
(y + 2).(4xz + 6y - 3) là số chính phương.
\(\dfrac{x}{y}=\dfrac{x+y}{y+z}=\dfrac{y}{z}\Rightarrow xz=y^2\)
\(\left(y+2\right)\left(4xz+6y-3\right)=n^2\)
\(\Rightarrow\left(y+2\right)\left(4y^2+6y-3\right)=n^2\)
Gọi \(d=ƯC\left(y+2;4y^2+6y-3\right)\)
\(\Rightarrow4y^2+6y-3-\left(y+2\right)\left(4y-2\right)⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\)
\(\Rightarrow y+2\) và \(4y^2+6y-3\) nguyên tố cùng nhau
Mà \(\left(y+2\right)\left(4y^2+6y-3\right)\) là SCP \(\Rightarrow y+2\) và \(4y^2+6y-3\) đồng thời là SCP
\(\Rightarrow4y^2+6y-3=k^2\)
\(\Leftrightarrow\left(4y+3\right)^2-21=\left(2k\right)^2\)
\(\Rightarrow\left(4y+3-2k\right)\left(4y+3+2k\right)=21\)
Giải pt ước số trên ra \(y=2\) là số nguyên dương duy nhất thỏa mãn
Thế vào \(xz=y^2=4\Rightarrow\left(x;z\right)=\left(1;4\right);\left(4;1\right);\left(2;2\right)\)
Vậy \(\left(x;y;z\right)=\left(1;2;4\right);\left(4;2;1\right);\left(2;2;2\right)\)
Tìm tất cả các cặp số nguyên ;x y thoả mãn điều kiện
x^2-xy-x+2y+1=0
PT\(\Leftrightarrow x^2-x+1=xy-2y\)
\(\Leftrightarrow x^2-2x+x-2+3=y(x-2)\)
\(\Leftrightarrow y\left(x-2\right)-x^2+2x-x+2=3\)
\(\Leftrightarrow y\left(x-2\right)-\left(x+1\right)\left(x-2\right)=3\)
\(\Leftrightarrow\left(x-2\right)\left(y-x-1\right)=3\) (*)
Vì \(\) \(x,y\in Z\) nên \(\begin{cases}x-2\in Z\\ y-x-1\in Z\end{cases}\)
=>Để (*) xảy ra thì tích của 2 biểu thức phải là tích của 2 ước số nguyên của 3
Đến đây bạn thay \(\left(x-2;y-x-1\right)\in{ ( 1 , 3 ) , ( 3 , 1 ) , ( - 1 , - 3 ) , ( - 3 , - 1 ) }\)
\(\Rightarrow(x-2;y-x-1)\in{(1;3),(3;1),(-1;-3),(-3;-1)}\)
\((x;y)\in{(3;7),(5;7),(1;-1),(-1;-1)}\)
Tìm tất cả các cặp số nguyên ;x y thoả mãn điều kiện x^2-xy-x+2y+1=0
Tìm tất cả các số nguyên dương x, y thỏa mãn:
(x-y)2 + 1 = xy