tìm giá trị nguyên để phương trình đạt giá trị nguyên 4*(x+y)=11+xy
1. Cho a, b là 2 sô thoả mãn đẳng thức 2a2 +1/a2 +b2/4 =4. Tính giá trị a, b để ab đạt giá trị nhỏ nhất
2. tìm nghiệm nguyên của phương trình x+y=xy
3. Chứng minh: a+b<= căn(2(a2+b2)) với mọi a,b
1.TA CO A^2 + B^2/4 >=AB ... 4- (A^2+1/A^2)>=AB . VOI A^2>=0 TACO A^2 +1/A^2 >=2 ... - (A^2+1/A^2)<=-2 SUYRA AB<= - (A^2+1/A^2)+4 <=-2+4 HAY AB<=2 . MAX AB=2 KHI A=1 , B=2A=2 2.XY-X-Y=0...XY-X-Y+1=1...X(Y-1)-(Y-1)=1...(X-1)(Y-1)=1. Vi X,Y NGUYEN NEN X-1 , Y-1 NGUYEN ...(X-1)(Y-1)=1.1= -1 .-1. VS X-1=1,Y-1=1 SUYRA X=Y=2...VS X-1=-1,Y-1=-1 SUYRA X=Y=0
1) \(2a^2+\frac{1}{a^2}+\frac{b^2}{4}=4\Leftrightarrow\left(a^2+\frac{1}{a^2}-2\right)+\left(a^2+\frac{b^2}{4}-ab\right)=4-ab-2\)
\(\Leftrightarrow\left(a-\frac{1}{a}\right)^2+\left(a-\frac{b}{2}\right)^2=2-ab\)
\(VF=2-ab=\left(a-\frac{1}{a}\right)^2+\left(a-\frac{b}{2}\right)^2\ge0\)
hay \(ab\le2\)
Dấu = xảy ra khi \(\hept{\begin{cases}a=\frac{1}{a}\\a=\frac{b}{2}\end{cases}\Leftrightarrow}\orbr{\begin{cases}\left(a;b\right)=\left(1;\frac{1}{2}\right)\\\left(a;b\right)=\left(-1;-\frac{1}{2}\right)\end{cases}}\)
2)
\(PT\Leftrightarrow\left(1-x\right)\left(y-1\right)=-1=1.\left(-1\right)=\left(-1\right).1\)
Xét các Th
3) bunyakovsky
Cho phương trình mx-2x+3=0
a)Giải phương trình với m=-4
b)Tìm giá trị của m để phương trình có nghiệm x=2
c)Tìm giá trị của m để pt có nghiệm duy nhất
d)Tìm giá trị nguyên của m để pt có nghiệm nguyên
a, mx - 2x + 3 = 0
m = -4
<=> -4x - 2x + 3 = 0
<=> -6x = -3
<=> x = 1/2
b, mx - 2x + 3 = 0
x = 2
<=> 2m - 2.2 + 3 =0
<=> 2m - 1 = 0
<=> m = 1/2
b1.Tìm nghiệm nguyên dương của phương trình sau:x+y+z=xyz
1. tìm x,y để C=-18-|2x-6|-|3y+9| đạt giá trị lớn nhất
Tìm các số nguyên x,y thỏa mãn:6xy+4x-9y-7=0
Tìm giá trị nhỏ nhất của A=x^3+y^3+xy với x,y dương thỏa mãn x+y=1
Tìm các số nguyên x,y thỏa mãn 2x^2+1/x^2+y^2/4=4 sao cho xy đạt giá trị lớn nhất
HELP !
a) \(6xy+4x-9y-7=0\)
\(\Leftrightarrow2x.\left(3y+2\right)-9y-6-1=0\)
\(\Leftrightarrow2x.\left(3y+x\right)-3.\left(3y+2\right)=1\)
\(\Leftrightarrow\left(2x-3\right).\left(3y+2\right)=1\)
Mà \(x,y\in Z\Rightarrow2x-3;3y+2\in Z\)
Tự làm típ
\(A=x^3+y^3+xy\)
\(A=\left(x+y\right)\left(x^2-xy+y^2\right)+xy\)
\(A=x^2-xy+y^2+xy\)( vì \(x+y=1\))
\(A=x^2+y^2\)
Áp dụng bất đẳng thức Bunhiakovxky ta có :
\(\left(1^2+1^2\right)\left(x^2+y^2\right)\ge\left(x\cdot1+y\cdot1\right)^2=\left(x+y\right)^2=1\)
\(\Leftrightarrow2\left(x^2+y^2\right)\ge1\)
\(\Leftrightarrow x^2+y^2\ge\frac{1}{2}\)
Hay \(x^3+y^3+xy\ge\frac{1}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)
Cho phân số A = 2n+4/x-3. a) Tìm số nguyên x để A là một số nguyên. b) Tìm số nguyên x để A đạt giá trị lớn nhất. c) Tìm số nguyên x để A đạt giá trị nhỏ nhất.
ta có
\(A=\dfrac{2x+4}{x-3}=\dfrac{2x-6+10}{x-3}=2+\dfrac{10}{x-3}\) nguyên khi x-3 là ước của 10 hay
\(x-3\in\left\{-10,-5,-2,-1,1,2,5,10\right\}\) hay
\(x\in\left\{-7,-2,2,4,5,8,13\right\}\)
b. Khi x nguyên thì A lớn nhất khi x-3= 1 hay x= 4.
c. Để A nhỏ nhất thì x -3 =-1 hay x = 2
Cho hệ phương trình: \(\left\{{}\begin{matrix}mx+4y=10-m\\x+my=4\end{matrix}\right.\)
a) Xác định các giá trị nguyên m để hệ có nghiệm duy nhất (x ; y) sao cho x > 0, y > 0.
b) Tìm giá trị nguyên m để hệ có nghiệm (x ; y) với x ; y là số nguyên dương.
Giải hệ phương trình: \(\left\{{}\begin{matrix}mx+4y=10-m\\x+my=4\end{matrix}\right.\)
a) Xác định các giá trị nguyên m để hệ có nghiệm duy nhất (x ; y) sao cho x > 0, y > 0.
b) Tìm giá trị nguyên m để hệ có nghiệm (x ; y) với x ; y là số nguyên dương.
a) Với \(m=0\) ta có:
\(\left\{{}\begin{matrix}0x+4y=10-0\\x+0y=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=\dfrac{5}{2}\end{matrix}\right.\) (nhận trường hợp này).
Với \(m\ne0\), ta có:
\(\left\{{}\begin{matrix}mx+4y=10-m\\x+my=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}mx+4y=10-m\\-mx-m^2y=-4m\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(4-m^2\right)y=10-5m\left(1\right)\\x+my=4\left(2\right)\end{matrix}\right.\)
Biện luận:
Với \(m=2\) \(\left(1\right)\Rightarrow0y=0\) (phương trình vô số nghiệm),
Với \(m=-2\Rightarrow0y=20\) (phương trình vô nghiệm).
Với \(m\ne\pm2\Rightarrow y=\dfrac{10-5m}{4-m^2}=\dfrac{5\left(2-m\right)}{\left(2-m\right)\left(2+m\right)}=\dfrac{5}{m+2}\)
Vì \(y>0\Rightarrow\dfrac{5}{m+2}>0\Leftrightarrow m+2>0\Leftrightarrow m>-2\)
Thay \(y=\dfrac{5}{m+2}\) vào (2) ta được:
\(x+\dfrac{5m}{m+2}=4\Leftrightarrow x=\dfrac{8-m}{m+2}\)
Vì x>0 \(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}8-m>0\\m+2>0\end{matrix}\right.\\\left\{{}\begin{matrix}8-m< 0\\m+2< 0\end{matrix}\right.\end{matrix}\right.\Rightarrow-2< m< 8\)
Vì m là số nguyên và \(m\ne2\) nên \(m\in\left\{-1;0;1;3;4;5;6;7\right\}\)
Vậy \(m\in\left\{1;0;1;3;4;5;6;7\right\}\) thì hệ đã cho có nghiệm duy nhất sao cho \(x>0,y>0\).
b) Với \(m=0\) ta có nghiệm \(\left(x;y\right)=\left(4;\dfrac{5}{2}\right)\) (loại).
Với \(m=2\). Ta có hệ vô số nghiệm với nghiệm tổng quát có dạng \(\left\{{}\begin{matrix}x\in R\\y=2-\dfrac{x}{2}\end{matrix}\right.\)
Vì y là số nguyên dương nên:
\(\left\{{}\begin{matrix}x⋮2\\2-\dfrac{x}{2}>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x⋮2\\x< 4\end{matrix}\right.\). Mặt khác x>0.
\(\Rightarrow x=2\Rightarrow y=1\)
Với \(m\ne\pm2\). Ta có \(y=\dfrac{5}{m+2}\).
Vì x,y là các số nguyên dương nên x,y>0. Nên:
\(m\in\left\{-1;0;1;3;4;5;6;7\right\}\) (1')
Mặt khác: \(5⋮\left(m+2\right)\)
\(\Rightarrow m+2\inƯ\left(5\right)\)
\(\Rightarrow m+2\in\left\{1;-1;5;-5\right\}\)
\(\Rightarrow m\in\left\{-1;-3;3;-7\right\}\) (2')
Từ (1') ,(2') \(\Rightarrow m\in\left\{-1;3\right\}\)
Vậy \(m\in\left\{-1;2;3\right\}\) thì hệ có nghiệm \(\left(x;y\right)\) với x,y là số nguyên dương.
a) tìm các số nguyên x để : B= I x-1 I + I x-2 I đạt giá trị nhỏ nhất !
b) tìm số nguyên x,y biết : xy+3x-y =6
b,xy+3x-y=6
(xy+3x)-(y+3)=3 0,5
x(y+3)-(y+3) =3
(x-1)(y+3)=3=3.1=-3.(-1) 0,5
Có 4 trường hợp xảy ra :
; ; ;
Từ đó ta tìm được 4 cặp số x; y thoả mãn là :
(x=4;y=-2) ; (x=2;y=0) ; (x=-2;y=-4) ; (x=0; y=-6) 1.0
phần a khó quá
tìm các số nguyên xy để biểu thức đạt giá trị nhỏ nhất
a = [ x-y ] + [y+2 ] +2011