cho tam giác abc. Chứng minh nếu trong tam giác có điểm d sao cho ad=ab thì ab<ac
cho tam giác ABC và điểm D nắm trong tam giác. Chứng minh rằng nếu AD=AB thì AB<AC
Không spam nha. Chương trình game xin tặng chương trình học online. Nhằm mục đích game được nhiều người chơi.
Thay mặt người đào tạo chương trình hôm nay : Có 200 suất học bỗng cho những học sinh tích cực hoạt động từ bây giờ ( Mỗi suất học bỗng là 100k). Nhận thưởng bằng cách vào google tìm kiếm.
Link như sau vào google hoặc cốc cốc để tìm kiếm:
https://lazi.vn/quiz/d/17912/game-lien-quan-mobile-ra-doi-vao-ngay-thang-nam-nao
Copy cũng được nha
Bạn hack nick mình thu ib dưới vs nha giúp mk chuyện nàynn
Kẻ \(AH\perp BC(H\in BC)\)
Có HD và HC lần lượt là hình chiếu của AD,AC trên BC
Mà HD < HC
=> AD < AC \((\)quan hệ đường vuông góc và đường xiên\()\)
Do AB = AD \((gt)\)
=> AB < AC \((đpcm)\)
Chúc bạn học tốt :>
Cho tam giác ABC. CMR nếu trong tam giác có điểm D sao cho AD=AB thì AB<AC.
Ta có HD < HC ( D nằm giữa H và C )
\(\Rightarrow\)AD < AC ( đường xiên và hình chiếu ) ( 1 )
Mà AD = AB ( gt ) ( 2 )
Từ ( 1 ) và ( 2 ) suy ra AB , AC
Vậy AB < AC ( đpcm )
Ta có
adb=dac+acb(góc ngoài tam giác acb tại đỉnh d)
➜adb>acb
mà adb=abd(tam giác abd cân tại a)
➜abd>acb
trong tam giác cạnh đối diện với góc lớn hơn là cạnh lớn hơn
➜đoạn ac>ab
(lưu ý:bài của tui ko cần phải vẽ thêm đoạn nha,chỉ cần vẽ đúng đề cho là được)
1. Cho bốn điểm A, B, C, D sao cho AB//CD và AD//BC. Chứng minh tam giác ABC = tam giác CDA.
2. Cho bốn điểm A, B, C, D sao cho AB//CD và AD//BC. Chứng minh AB = CD.
3. Cho tam giác ABC. Trên các tia đối AB, AC lần lượt lấy các điểm E, F sao cho AE = AC, AF = AC. Chứng minh tam giác ABC = tam giác AFE.
1) Ta có hình vẽ sau:
Vì AB // CD nên \(\widehat{A_1}\) = \(\widehat{C_1}\) (so le trong)
AD // BC nên \(\widehat{A_2}\) = \(\widehat{C_2}\) ( so le trong)
Xét ΔABC và ΔCDA có:
\(\widehat{A_1}\) = \(\widehat{C_1}\) (cm trên)
AC: Cạnh chung
\(\widehat{A_2}\) = \(\widehat{C_2}\) (cm trên)
\(\Rightarrow\) ΔABC = ΔCDA (g.c.g) (đpcm)
2) Chứng minh tương tự ta có: ΔCDA = ABC (g.c.g)
\(\Rightarrow\) AB = CD ( 2 cạnh tương ứng) (đpcm)
3) Mình sửa lại chỗ AE = AC là AE = AB đó nha, bn ghi nhầm đề!!!
Ta có hình vẽ sau:
Xét ΔABC và ΔAFE có:
AE = AB (gt)
\(\widehat{A_1}\) = \(\widehat{A_2}\) (đối đỉnh)
AF = AC (gt)
\(\Rightarrow\) ΔABC = ΔAFE(c.g.c) (đpcm)
Bạn áp dụng trường hợp bằng nhau cạnh - góc - cạnh của tam giác rồi chứng minh nha
Bài 6: Cho tam giác ABC có AB < AC kẻ tia phân giác AD của góc BAC. Trên cạnh AC lấy
điểm E sao cho AE = AB. Trên tia AB lấy điểm F sao cho AF = AC. Chứng minh rằng:
a) Tam giác ADF= Tam giác ADC
b) Chứng minh ba điểm E, F, D thẳng hàng
c) Chứng minh AD vuông góc với CF
a: Xét ΔADF và ΔADC có
AD chung
\(\widehat{FAD}=\widehat{CAD}\)
AF=AC
Do đó: ΔADF=ΔADC
b: Xét ΔABD và ΔAED có
AB=AE
\(\widehat{BAD}=\widehat{EAD}\)
AD chung
Do đó: ΔABD=ΔAED
=>DB=DE và \(\widehat{ABD}=\widehat{AED}\)
Ta có: \(\widehat{ABD}+\widehat{FBD}=180^0\)(hai góc kề bù)
\(\widehat{AED}+\widehat{CED}=180^0\)(hai góc kề bù)
mà \(\widehat{ABD}=\widehat{AED}\)
nên \(\widehat{FBD}=\widehat{CED}\)
Ta có: AB+BF=AF
AE+EC=AC
mà AB=AE và AF=AC
nên BF=EC
Xét ΔDBF và ΔDEC có
DB=DE
\(\widehat{DBF}=\widehat{DEC}\)
BF=EC
Do đó: ΔDBF=ΔDEC
=>\(\widehat{BDF}=\widehat{EDC}\)
mà \(\widehat{EDC}+\widehat{BDE}=180^0\)(hai góc kề bù)
nên \(\widehat{BDE}+\widehat{BDF}=180^0\)
=>E,D,F thẳng hàng
c: Ta có: ΔDBF=ΔDEC
=>DF=DC
=>D nằm trên đường trung trực của CF(1)
ta có: AF=AC
=>A nằm trên đường trung trực của CF(2)
Từ (1) và (2) suy ra AD là đường trung trực của CF
=>AD\(\perp\)CF
Cho tam giác ABC nhọn có AB<AC.Kể tia phân giác AD của góc BAC ( D thuộc BC).Trên cạnh AC lấy điểm E sao cho AE =AB, trên tia AB lấy điểm F sao cho AF=AC
A) Chứng minh tam giác BDF= tam giác EDC.
B)Chứng minh ba điểm F,D,E thẳng hàng
a: Xét ΔABD và ΔAED có
AB=AE
\(\widehat{BAD}=\widehat{EAD}\)
AD chung
Do đó: ΔABD=ΔAED
Suy ra: DB=DE và \(\widehat{ABD}=\widehat{AED}\)
hay \(\widehat{DBF}=\widehat{DEC}\)
Xét ΔDBF và ΔDEC có
\(\widehat{DBF}=\widehat{DEC}\)
DB=DE
\(\widehat{BDF}=\widehat{EDC}\)
Do đó: ΔDBF=ΔDEC
cho tam giác abc có ab = 10cm ac = 15cm trên đường ab lấy điểm e sao cho ae = 6cm trên ac lấy điểm d sao cho ad= 4cm Chứng minh tam giác adb đồng dạng tam giác aec
Xét ΔADB và ΔAEC có
\(\dfrac{AD}{AE}=\dfrac{AB}{AC}\left(\dfrac{4}{6}=\dfrac{10}{15}=\dfrac{2}{3}\right)\)
\(\widehat{A}\) chung
Do đó: ΔADB\(\sim\)ΔAEC(c-g-c)
cho tam giác abc nhọn có ab < ac. vẽ tia đối của tia ab, trên đó lấy điểm d sao cho ad= ac. vẽ tia đối của tia ac, trên đó lấy điểm e sao cho ae= ab chứng minh tam giác abc bằng tam giác aed
Cho tam giác ABC có AB=6cm;BC=10cm;AC=8cm.Gọi M là trung điểm của BC.Trên tia đối của tia MA lấy điểm E sao cho ME=MA.Trên tia đối của tia AB lấy điểm D sao cho AD=AB.
a) Tam giác ABC là tam giác gì?Vì sao?
b) Chứng minh AB=EC và AB//CE
c) Chứng minh tam giác BCD là tam giác cân
a/ Trong TG ABC : AB2=BC2-AC2 (đ/l Pytago đảo)
AB2=102-82=62
=> TG ABC là TG vuông .
Cho tam giác ABC vuông tại A. Trên tia đối của tia AB lấy điểm D sao cho AB = AD. Chứng minh tam giác ABC = tam giác ADC
Xet ΔABC vuông tại A và ΔADC vuông tại A có
AB=AD
AC chung
=>ΔABC=ΔADC