cho hàm số f(x)=100/100+10. a) cmr nếu a b là 2 số thỏa mãna+b=1 thì f(a)+f(b)=1
Cho hàm số \(f\left(x\right)=\frac{100^x}{100^x+10}\)
a, Chứng minh rằng nếu a,b là 2 số thỏa mãn a + b = 1 thì f(a) + f(b) = 1
b,Tính tổng \(A=f\left(\frac{1}{2020}\right)+f\left(\frac{2}{2020}\right)+...+f\left(\frac{2019}{2020}\right)\)
Cho hàm số \(f\left(x\right)=\frac{100^x}{100^x+10}\)
a, Chứng minh rằng nếu a,b là 2 số thỏa mãn a + b = 1 thì f(a) + f(b) = 1
b,Tính tổng \(A=f\left(\frac{1}{2020}\right)+f\left(\frac{2}{2020}\right)+...+f\left(\frac{2019}{2020}\right)\)
Cho hàm số $f(x)=\dfrac{100^x}{100^x+10}$. Chứng minh rằng : nếu a, b là hai số thỏa mãn : $a+b=1$ thì $f(a)+f(b)=1$.
Ta có:
\(f\left(a\right)+f\left(b\right)=f\left(a\right)+f\left(1-a\right)\\ =\dfrac{100^a}{100^a+10}+\dfrac{100^{1-a}}{100^{1-a}+10}\\ =\dfrac{100^a}{100^a+10}+\dfrac{\dfrac{100}{100^a}}{\dfrac{100}{100^a}+10}\\ =\dfrac{100^a}{100^a+10}+\dfrac{100}{100^a}.\dfrac{100^a}{100+10.100^a}\\ =\dfrac{100^a}{100^a+10}+\dfrac{10}{10+100^a}\\ =\dfrac{100^a+10}{10+100^a}=1\left(đpcm\right)\)
Cho hàm số f(x) = \(\frac{100^x}{100^x+10}\) . Chứng minh rằng nếu a và b là số thỏa mãn a+b=1 thì f(a)+f(b)=1
Ta có \(f\left(x\right)=\frac{100^x}{100^x+10}\)
\(\Rightarrow\left\{\begin{matrix}f\left(a\right)=\frac{100^a}{100^a+10}\\f\left(b\right)=\frac{100^b}{100^b+10}\end{matrix}\right.\)
\(\Rightarrow f\left(a\right)+f\left(b\right)=\frac{100^a}{100^a+10}+\frac{100^b}{100^b+10}\)
\(=\frac{100^a\left(100^b+10\right)+100^b\left(100^a+10\right)}{100^b\left(100^a+10\right)+10\left(100^a+10\right)}\)
\(=\frac{100^a.100^b+100^a.10+100^b,100^a+100^b.10}{100^b.100^a+100^b.10+100^a.10+100}\)
\(=\frac{100^{a+b}+100^a.10+100^{b+a}+100^b.10}{100^{b+a}+100^b.10+100^a.10+100}\)
Thế \(a+b=1\)
\(\Rightarrow\frac{100+100^a.10+100+100^b.10}{100+100^b.10+100^a.10+100}=1\)
\(\Leftrightarrow f\left(a\right)+f\left(b\right)=1\)
Cho hàm số f(x)=100x/100x+10
a)Chứng tỏ rằng nếu a,b là hai số thỏa mãn a+b=1 thì f(a)+f(b)=1
b)Tính tổng A=\(f\left(\frac{1}{2007}\right)+f\left(\frac{2}{2007}\right)+...+f\left(\frac{2006}{2007}\right)\)
Cho hàm số f(x)=100x\(100x+10)
a) tính A= f(a)+f(b) biết a+b=1
Cho hàm số liên tục trên khoảng (a;b) và x 0 ∈ ( a ; b ) . Có bao nhiêu mệnh đề đúng trong các mệnh đề sau?
(1) Hàm số đạt cực trị tại điểm x 0 khi và chỉ khi f ' ( x 0 ) = 0 .
(2) Nếu hàm số y = f ( x ) có đạo hàm và có đạo hàm cấp hai tại điểm x 0 thỏa mãn điều kiện f ' ( x 0 ) = f ' ' ( x 0 ) = 0 thì điểm x 0 không phải là điểm cực trị của hàm số y = f ( x ) .
(3) Nếu f'(x) đổi dấu khi x qua điểm x 0 thì điểm x 0 là điểm cực tiểu của hàm số y = f ( x ) .
(4) Nếu hàm số y = f ( x ) có đạo hàm và có đạo hàm cấp hai tại điểm x 0 thỏa mãn điều kiện f ' ( x 0 ) = 0 , f ' ' ( x 0 ) > 0 thì điểm x 0 là điểm cực tiểu của hàm số y = f ( x ) .
A. 1
B. 2
C. 0
D. 3
Đáp án A
Phương pháp:
Dựa vào khái niệm cực trị và các kiến thức liên quan.
Cách giải:
(1) chỉ là điều kiện cần mà không là điều kiện đủ.
VD hàm số y = x3 có y' = 3x2 = 0 ⇔ x = 0. Tuy nhiên x = 0 không là điểm cực trị của hàm số.
(2) sai, khi f''(x0) = 0, ta không có kết luận về điểm x0 có là cực trị của hàm số hay không.
(3) hiển nhiên sai.
Vậy (1), (2), (3): sai; (4): đúng
Cho hàm số y=f(x) có đạo hàm trên đoạn [a;b]. Ta xét các khẳng định sau:
1) Nếu hàm số f(x) đạt cực đại tại điểm x 0 ∈ a ; b thì f x o là giá trị lớn nhất của f(x) trên đoạn [a;b]
2) Nếu hàm số f(x) đạt cực đại tại điểm x 0 ∈ a ; b thì f x o là giá trị nhỏ nhất của f(x) trên đoạn [a,b]
3) Nếu hàm số f(x) đạt cực đại tại điểm x 0 và đạt cực tiểu tại điểm x 1 x 0 , x 1 ∈ a ; b thì ta luôn có f x 0 > f x 1
Số khẳng định đúng là?
A. 1
B. 2
C. 0
D. 3
Đáp án A
Hàm số f(x) xác định trên D⊆ R
Điểm
x
0
∈ D được gọi là điểm cực đại của hàm số f(x) nếu tồn tại một khoảng (a;b)⊂ D sao cho
x
0
∈ (a;b) và f(
x
0
)>f(x),∀x ∈ (a,b)∖{
x
0
}.
Cho hàm số y=f(x)có đạo hàm trên đoạn [a,b]. Ta xét các khẳng định sau:
1) Nếu hàm số f(x) đạt cực đại tại điểm x 0 ∈ a ; b thì f x o là giá trị lớn nhất của f(x) trên đoạn[a,b]
2) Nếu hàm số f(x) đạt cực đại tại điểm x 0 ∈ a ; b thì f x o là giá trị nhỏ nhất của f(x) trên đoạn [a,b]
3) Nếu hàm số f(x) đạt cực đại tại điểm x 0 và đạt cực tiểu tại điểm x 1 x 0 , x 1 ∈ a ; b thì ta luôn có f x 0 > f x 1
Số khẳng định đúng là?
A. 1
B. 2
C. 0
D. 3
Đáp án A
Hàm số f(x) xác định trên D⊆ R
Điểm xo∈ D được gọi là điểm cực đại của hàm số f(x) nếu tồn tại một khoảng (a;b)⊂ D sao cho xo∈ (a;b) và f(xo)>f(x),∀x ∈ (a,b)∖{xo}.