Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyen tien dat
Xem chi tiết
Nguyễn Thị Thảo
28 tháng 3 2017 lúc 18:45

 y = 6

x = 2010

Nguyễn Hà Khánh Chi
Xem chi tiết
Nguyễn Việt Hoàng
11 tháng 1 2023 lúc 22:48

\(\dfrac{x}{36}+\dfrac{y}{36}=7,25\)

\(\Leftrightarrow x+y=7,25:\dfrac{1}{36}=261\)

Vì x và y là 2 số tự nhiên liên tiếp , x > y

=> x - y = 1

\(\Rightarrow\left\{{}\begin{matrix}x=\left(261+1\right):2=131\\y=130\end{matrix}\right.\)

x : 36 + y : 36 = 7,25

( x + y) : 36     = 7,25

x + y               = 7,25  x 36

x + y                = 261

vì x và y là hai số tự nhiên liên tiếp mà x > y nên x - y = 1

Áp dụng toán tổng tỉ của lớp 4; 5 ta có

x = ( 261 + 1):2 = 131; y = 131 - 1 = 130

vậy x = 131; y = 130

 

Hoàng Lê Cát Tường
13 tháng 1 2023 lúc 21:37

i

Lê Ngọc Kim Anh
Xem chi tiết
Froever_Lovely
6 tháng 4 2019 lúc 19:57

Xin hỏi cậu học lớp mấy ?

Lê Ngọc Kim Anh
6 tháng 4 2019 lúc 20:01

mình học lớp 6

Lê Ngọc Kim Anh
6 tháng 4 2019 lúc 20:02

mà bạn hỏi làm gì vậy

piojoi
Xem chi tiết
Toru
2 tháng 9 2023 lúc 22:24

Ta có: \(y^2\ge0\forall y\in Z\)

\(\Rightarrow-y^2\le0\forall y\in Z\)

\(\Rightarrow36-y^2\le36\forall y\in Z\)

mà \(36-y^2=8\left(x-2010\right)^2\) (*)

nên \(8\left(x-2010\right)^2\le36\forall x\in Z\)

\(\Rightarrow\left(x-2010\right)^2\le\dfrac{36}{8}< 5\)

Mặt khác: \(\left(x-2010\right)^2\ge0\forall x\in Z\)

\(\Rightarrow\left(x-2010\right)^2\in\left\{0;1;2;3;4\right\}\)   (1)

Lại có: \(x\in Z\) nên \(x-2010\in Z\) (2)

Từ (1) và (2) \(\Rightarrow\left(x-2010\right)^2\in\left\{0;1;4\right\}\)

+, Với \(x-2010=0\Leftrightarrow x=2010\) , (*) trở thành:

\(36-y^2=0\)

\(\Rightarrow y^2=36\Rightarrow\left[{}\begin{matrix}y=6\\y=-6\end{matrix}\right.\left(tm\right)\)

+, Với \(\left(x-2010\right)^2=1\Leftrightarrow\left[{}\begin{matrix}x-2010=1\\x-2010=-1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2011\\x=2009\end{matrix}\right.\)

Khi đó: (*) ⇔ \(36-y^2=8\)

\(\Rightarrow y^2=28\Rightarrow y=\pm\sqrt{28}\left(ktm\right)\)

+, Với \(\left(x-2010\right)^2=4\Leftrightarrow\left[{}\begin{matrix}x-2010=2\\x-2010=-2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2010\\x=2008\end{matrix}\right.\)

Khi đó: (*) ⇔ \(36-y^2=8\cdot4\)

\(\Rightarrow y^2=4\Leftrightarrow\left[{}\begin{matrix}y=2\\y=-2\end{matrix}\right.\left(tm\right)\)

Vậy ...

Trần Duy Quân
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 4 2022 lúc 21:10

a: Vì y là số nguyên tố

mà y là ước của 28

nên y=2

=>x=14

b: Theo đề, ta có: x=BCNN(36;90)

hay x=180

Trần Duy Quân
Xem chi tiết
Trần Khánh Chi
22 tháng 12 2016 lúc 20:43

bài kia quá dễ cậu ko làm đc thì học lớp 6 làm gìbucqua

Trần Khánh Chi
22 tháng 12 2016 lúc 20:44

cau b la BCNN(36;90) do ma banh

Cù Thu Trang
Xem chi tiết
ST
1 tháng 8 2018 lúc 9:58

Ta có: \(36-y^2=8\left(x-2010\right)^2\Rightarrow8\left(x-2010\right)^2+y^2=36\)

Vì \(y^2\ge0\Rightarrow8\left(x-2010\right)^2\le36\Rightarrow\left(x-2010\right)^2\le\frac{36}{8}\)

Mà (x-2010)2 là số chính phương => (x-2010)2=4 hoặc (x-2010)2=1 hoặc (x-2010)2=0

- Với \(\left(x-2010\right)^2=4\Rightarrow\orbr{\begin{cases}x-2010=2\\x-2010=-2\end{cases}\Rightarrow\orbr{\begin{cases}x=2012\\x=2008\end{cases}}}\)

=>y2 = 4 => y = 2 (y thuộc N)

- Với \(\left(x-2010\right)^2=1\Rightarrow y^2=36-8=28\left(loại\right)\)

- Với \(\left(x-2010\right)^2=0\Rightarrow x=2010\)

=>y2=36 => y=6 (y thuộc N)

Vậy các cặp (x;y) là (2012;2);(2018;2);(2010;6)

Doraemon
31 tháng 8 2018 lúc 10:13

Ta có: \(36-y^2=8\left(x-2010\right)^2\Rightarrow8\left(x-2010\right)^2+y^2=36\)

Vì \(y^2\ge0\Rightarrow8\left(x-2010\right)^2\le36\Rightarrow\left(x-2010\right)^2\le\frac{36}{8}\)

Mà \(\left(x-2010\right)^2\)là số chính phương \(\Rightarrow\left(x-2010\right)^2=4\)hoặc \(\left(x-2010\right)^2=1\)hoặc \(\left(x-2010\right)^2=0\)

- Với \(\left(x-2010\right)^2=4\Rightarrow\orbr{\begin{cases}x-2010=2\\x-2010=-2\end{cases}\Rightarrow\orbr{\begin{cases}x=2012\\x=2008\end{cases}}}\)

\(\Rightarrow y^2=4\Rightarrow y=2\left(y\inℕ^∗\right)\)

- Với \(\left(x-2010\right)^2=1\Rightarrow y^2=36-8=28\)(loại)

- Với \(\left(x-2010\right)^2=0\Rightarrow x=2010\)

\(\Rightarrow y^2=36\Rightarrow y=6\left(y\inℕ^∗\right)\)

Vậy các cặp \(\left(x;y\right)\)lần lượt là \(\left(2012;2\right);\left(2018;2\right);\left(2010;6\right)\)

People
22 tháng 3 2023 lúc 20:07

\(\dfrac{2222222222222222222222222222222}{2111111111111111111111111111111111111111111111111111111}\)

Mai Ngọc
Xem chi tiết
Đỗ Minh Hàng
6 tháng 3 2016 lúc 14:03

Mnhf cũng chưa trả lời đc câu hỏi này :(

Trần Tiến Phát
22 tháng 3 2017 lúc 22:32

ta có: \(y^2\ge0\forall y\)

\(\Rightarrow-y^2\le0\forall y\)

\(\Rightarrow36-y^2\le36\)

MÀ \(36-y^2=8\left(x-2010\right)^2\)

\(\Rightarrow8\left(x-2010\right)^2\le36\)

\(\Rightarrow\left(x-2010\right)^2\le\frac{36}{8}=\frac{9}{2}=4.5\)

Mà \(x\in N\Rightarrow\left(x-2010\right)^2\le4\)

\(\Rightarrow\left(x-2010\right)\in\){-2;-1;0;1;2}

TH1:(X-2010)=-2\(\Rightarrow8\left(X-2010\right)^2=8\times\left(-2\right)^2=32\Rightarrow36-y^2=32\Rightarrow y^2=4\Rightarrow y=2\)(\(y\in N\))

TH2:(x-2010)=-1\(\Rightarrow\)

TH3:(x-2010)=0\(\Rightarrow\)

TH4:(x-2010)=1\(\Rightarrow\)

TH5:(x-2010)=2\(\Rightarrow\)

Vậy (x;y)\(\in\).......

danh anh
4 tháng 8 2017 lúc 22:16

bai nay de

hồ nghĩa trường
Xem chi tiết
Lê Song Phương
18 tháng 12 2023 lúc 5:21

Điều kiện đã cho \(\Leftrightarrow7\left(x-2019\right)^2+y^2=23\) (*)

Do \(\left(x-2019\right)^2,y^2\ge0\) nên (*) suy ra \(y^2\le23\Leftrightarrow y^2\in\left\{0,1,4,9,16\right\}\)

\(\Leftrightarrow y\in\left\{0,1,2,3,4\right\}\)

Hơn nữa, lại có \(y^2=23-7\left(x-2019\right)^2\). Ta thấy \(VP\) chia 7 dư 2.

\(\Rightarrow y^2\) chia 7 dư 2 \(\Rightarrow y\in\left\{3,4\right\}\)

Xét \(y=3\) \(\Rightarrow7\left(x-2019\right)^2=14\) \(\Leftrightarrow\left(x-2019\right)^2=2\), vô lí.

Xét \(y=4\Rightarrow7\left(x-2019\right)^2=7\) \(\Leftrightarrow\left(x-2019\right)^2=1\) \(\Leftrightarrow\left[{}\begin{matrix}x=2020\\x=2018\end{matrix}\right.\)

Vậy \(\left(x,y\right)\in\left\{\left(4;2020\right),\left(4;2018\right)\right\}\) thỏa mãn ycbt.