Cho tg nhọn ABC hai đg BD và CE
a, Cm: AE. AB = AD. AC
b, cm: tg ADE ~ tg ABC
c, biết A = 60 độ . SABC = 240 cm2 . Tính diện tích ADE
cho tg ABC nhọn, biết góc A=60 độ, đường cao BD,CE giao nhau tại H. CMR
a/ tg ABD đồng dạng tg ACE và AD.AC=AE.AB
b/ góc ADE=góc ADC
c/ tính diện tích ADE/diện tích ABC
d/ AH cắt BC tại F. CM: AE/EB.BF/FC.CD/DA=1
giup mk bài này vs
Cho hình chữ nhât ABCD AB=8cm.BC=6cm.trên cạnh BC lấy K sao cho CK=2cm.Đường thẳng AK cắt BD và DC lần lluwowtj tại E và M
a. CM tg ABK đồng dạng tg MCK
b. Tính CM, Tính diện tích tg ADM
c CM tg ADE đồng dạng tg KBE
d. AE^2=EK.EM
Giups mình câu d với các bạn nhá !! Akai Haruma
Vì ΔADE đồng dạng ΔEBK(câu c)
=>\(\dfrac{EK}{AE}=\dfrac{BE}{ED}\)(2 cặp cạnh tương ứng đồng dạng) (1)
Vì ΔABK đồng dạng ΔMCK(câu a)
=> góc BAE= góc EMD
Xét ΔABE và ΔMDE, có:
+ góc AEB=góc DEM(đối đỉnh)
+ góc BAE=góc EMD(cmt)
=>ΔABE ~ ΔMDE(g.g)
=>\(\dfrac{AE}{EM}=\dfrac{BE}{ED}\) (2)
Từ (1) và (2)=>\(\dfrac{EK}{AE}=\dfrac{AE}{EM}\)
=> AE.AE=EK.EM
=>\(^{AE^2}\)=EK.EM(đpcm)
Cho tam giác ABC, hai đường cao BD và CEa. Chứng minh AE.AB AD.ACb. Chứng minh góc ADE ABC góc AED ABCc. Biết  60 độ, SABC 120 cm2.Tính SADE
tg ABC ( AB < AC ) pg AD trên cạnh AC lấy E sao AE =AB
a, cm tg ADB =tg ADE
b, đg DE cắt AB tại F cm EF=BC
C, cm AD vuông CF d, DC>DB
tu ke hinh:
a, xet tam giac ADE va tam giac ADB co : AD chung
goc EAD = goc DAB do AD la pg cua goc A (gt)
AE = AB (gt)
=> tam giac ADE = tam giac ADB (c - g - c)
b, tam giac ADE = tam giac ADB (Cau a)
=> DE = DB (dn) (1)
goc DEA = goc DBA (dn)
goc DEA + goc DEC = 180 (kb)
goc DBA + goc DBF = 180 (kb)
=> goc DEC = goc DBF (2)
xét tam giac DEC va tam giac DBF co : goc CDE = goc FDB (doi dinh) (3)
(1)(2)(3) => tam giac DEC = tam giac DBF (g - c - g)
=> CE = BF
Cho tg ABC nhọn ) AB < AC. Vẽ đường cao BD và CE .
a) cm tg ADE đồng dạng tg ABC
b) DE cắt CB tại I. cm IBE đồng dạng IDC
c) O là trung điểm BC Cm : ID . IE = OI^2 - OC^2
cho tam giáp nhọn abc vẽ dường cao bd và ce
a cm tam giác aec đồng dạng với tam giác adb từ dố suy ra ae.ab=ad.ac
b,cm góc ade=góc abc
c,giả sử góc a=60 độ diện tích tam giác abc=120cm mét vuông tính diện tích tam giác ade
a. -△AEC và △ADB có: \(\widehat{AEC}=\widehat{ADB}=90^0;\widehat{BAC}\) là góc chung.
\(\Rightarrow\)△AEC∼△ADB (g-g).
\(\Rightarrow\dfrac{AE}{AD}=\dfrac{AC}{AB}\Rightarrow AE.AB=AD.AC\).
\(\Rightarrow\dfrac{AE}{AC}=\dfrac{AD}{AB}\)
b. -△ADE và △ABC có: \(\dfrac{AE}{AC}=\dfrac{AD}{AB};\widehat{BAC}\) là góc chung.
\(\Rightarrow\)△ADE∼△ABC (g-g).
c. -△AEC vuông tại E có: \(\widehat{EAC}=60^0\Rightarrow AE=\dfrac{AC}{2}\)
-△ADE∼△ABC \(\Rightarrow\dfrac{S_{ADE}}{S_{ABC}}=\left(\dfrac{AE}{AC}\right)^2=\dfrac{1}{4}\)
\(\Rightarrow S_{ADE}=\dfrac{1}{4}S_{ABC}=\dfrac{1}{4}.120=30\left(cm^2\right)\)
cho tg abc có 3 góc nhọn ab<ac
đường cao AD BE CF cắt nhau tại H
a)cm AEF đ d với tg ABC
b) EF cắt CB tại M cm MB.MC=ME.MF
c) biết Sabc=24m BD=3 CD=5
tính Sbhc
Cho tam giác nhọn ABC ,hai đường BD ,CE
a,Chứng minh AE.AB=AD.AC
b,Tam giác ADE đồng dạng với tam giác ABC
c,Góc A = 60o ,SABC =120 .Tính SADE
giúp mình giải câu này với
Cho tg ABC có góc A=60 độ , AB<AC , đường cao BH ( H thuộc AC ).
a) So sánh góc ABC và góc ACB. Tính góc ABH.
b) Vẽ AD phân giác của góc A ( D thuộc BC ) , vẽ BI vuông góc AD tại I . Cm tg AIB=tg BHA .
c) Tia BI cắt AC ở E . Cm tg ABE đều.
d) Cm DC>DB
a) Ta có: AB < AC
=> ACB < ABC
ABH = 90 - 60 = 30o
b) DAC = DAB = 90 - (A/2) = 90 - 30 = 60o
ABI = 90 - 30 = 60
Xét 2 tam giác vuông AIB và BHA có: AB (chung)
Ta có: BAH = ABD = 60 (cmt)
=> AIB = BHA (ch - gn)
c) Theo câu a), ta có: Tam giác AIB = BHA (ch - gn)
=> AIB = BHA = 60o
=> BEA = 180 - 60 - 60 = 60o
Có: ABE = BEA = EAB = 60
=> Tam giác ABE là tam giác đều.
d) Gọi Bx là tia đối của tia BA
Xét tam giác ADB và tam giác ADC có: AB = AE
EAD = DAB = 30o
Cạnh AD chung.
=> Tam giác ADB = tam giác ADC (c.g.c)
=> DB = DB (1) và góc ABD = góc AED
Do đó:
CBx = CED (cùng kề bù với 2 góc = nhau)
CBx > C
=> DC > DE (2)
Từ (1); (2) => DC > DB