Cho góc nhọn xOy, trên tia Ox lấy 2 điểm A và B, trên tia Oy lấy 2 điểm C và D sao cho OA=OC; OB=OD
a)Chứng minh ∆OAD=∆OCB
b)Gọi I là giao điểm của AD và BC chứng minh ∆OIB=∆OID
c)Chứng minh ∆IAB=∆ICD
Cho góc nhọn xOy. Trên tia Ox lấy hai điểm A, C, trên tia Oy lấy hai điểm B, D sao cho OA=OB; OC=OD; (A nằm giữa O và C; B nằm giữa O và D)
A. ∆ O A D = ∆ O C B
B. ∆ O D A = ∆ O B C
C. ∆ A O D = ∆ B C O
D. ∆ O A D = ∆ O B C
Cho góc nhọn xOy. Trên tia Ox lấy điểm A, trên tia Oy lấy điểm B sao
cho OA = OB. Trên tia Ox lấy điểm C, trên tia Oy lấy điểm D sao cho OC = OD.
a) Chứng minh: AD = BC.
b) Gọi E là giao điểm AD và BC. Chứng minh:tam giác AEC = tam giác BED
cho góc nhọn xOy. trên tia Ox lấy điểm A và B sao cho OA=OB. Trên tia Oy lấy điểm C và D sao cho OC=OD=OA. Chứng minh rằng
a) Δ OAD = Δ OCB
b) Δ KAB=Δ KCD ( K là giao điểm AD và BC)
c) OK là tia phân giác góc xOy
a) Chứng minh: AD = BC.
Xét ∆OAD và ∆OBC có:
OA = OB (gt);
ˆAODAOD^ chung;
OD = OC (gt)
Do đó ∆OAD = ∆OBC (c.g.c)
Suy ra AD = BC (hai cạnh tương ứng)
b) Chứng minh: ∆EAC = ∆EBD.
Vì ∆OAD = ∆OBC (câu a)
Nên ˆA2=ˆB2A^2=B^2 (hai góc tương ứng)
Mà ˆA1+ˆA2=180oA^1+A^2=180o, ˆB1+ˆB2=180oB^1+B^2=180o (kề bù)
Do đó ˆA1=ˆB1A^1=B^1.
Mặt khác, OA = OB, OC = OD
Suy ra OC – OA = OD – OB
Do đó AC = BD
Xét ∆EAC và ∆EBD có:
ˆA1=ˆB1A^1=B^1 (cmt);
AC = BD (cmt);
ˆOCB=ˆODAOCB^=ODA^ (vì ∆OAD = ∆OBC)
Do đó ∆EAC = ∆EBD (g.c.g).
c) Chứng minh: OE là tia phân giác của góc xOy.
Vì ∆EAC = ∆EBD (câu b)
Nên AE = BE (hai cạnh tương ứng).
Xét ∆OAE và ∆OBE có:
OA = OB (gt);
Cạnh OE chung;
AE = BE (cmt)
Do đó ∆OAE và ∆OBE (c.c.c)
Suy ra ˆAOE=ˆBOEAOE^=BOE^ (hai góc tương ứng)
Hay OE là phân giác của góc xOy.
5. Cho góc nhọn xOy. Trên tia Ox, lấy 2 điểm A và C. Trên tia Oy lấy 2 điểm B và D sao cho OA = OB ; OC = OD. (A nằm giữa O và C; B nằm giữa O và D).
a. Chứng minh DOAD = DOBC
b. So sánh 2 góc CAD và CBD .
a: Xét ΔOAD và ΔOBC có
OA=OB
\(\widehat{O}\) chung
OD=OC
Do đó: ΔOAD=ΔOBC
Cho góc nhọn xOy. Trên tia Ox lấy hai điểm A, C, trên tia Oy lấy hai điểm B, D sao cho OA = OB; OC = OD (A nằm giữa O và C; B nằm giữa O và D) Chọn câu đúng
A. Δ O A D = Δ O C B
B. Δ O D A = Δ O B C
C. Δ A O D = Δ B C O
D. Δ O A D = Δ O B C
Cho góc nhọn xOy. Trên tia Ox lấy 2 điểm A và B (OA<OB). Trên tia Oy lấy 2 điểm C và D sao cho OC=OA, OD=OB.
a. Chứng minh: △OAD = △OCB.
b. AD cắt BC tại M. Chứng minh: OM là tia phân giác của góc xOy.
c. Chứng minh: AC//BD.
a; Xét 2 tam giác AOD và COB có
OA=OC(gt)
OB=OD(gt)
góc O chung
⇒ΔAOD=ΔOCD⇒ΔAOD=ΔOCD(c.g.c)
⇒⇒AD=CB(2 cạnh tương ứng)
b; vì OB=OD mà OA=OC ⇒⇒AB=CD
Xét 2 tam giác ABD và CDB có
AB=CD
AD=CB
DB là cạnh chung
⇒⇒ΔABD=ΔCDBΔABD=ΔCDB(c.c.c)
c; tự làm dễ rồi
Xét ΔODB và ΔOCA có
\(\dfrac{OD}{OC}=\dfrac{OB}{OA}\left(\dfrac{3}{6}=\dfrac{4}{8}\right)\)
\(\widehat{O}\) chung
Do đó: ΔODB đồng dạng với ΔOCA
=>\(\dfrac{OD}{OC}=\dfrac{OB}{OA}\)
=>\(\dfrac{OD}{OB}=\dfrac{OC}{OA}\)
Xét ΔODC và ΔOBA có
\(\dfrac{OD}{OB}=\dfrac{OC}{OA}\)
\(\widehat{O}\) chung
Do đó: ΔODC đồng dạng với ΔOBA
=>\(\dfrac{DC}{BA}=\dfrac{OC}{OA}\)
=>\(\dfrac{DC}{5}=\dfrac{6}{8}=\dfrac{3}{4}\)
=>\(DC=3\cdot\dfrac{5}{4}=\dfrac{15}{4}=3,75\left(cm\right)\)
Cho góc nhọn xOy. Trên tia Ox lấy hai điểm A, C, trên tia Oy lấy hai điểm B, D sao cho OA = OB; OC = OD (A nằm giữa O và C; B nằm giữa O và D) So sánh hai góc C A D ^ và C B D ^
A. C B D ^ = C A D ^
B. C B D ^ < C A D ^
C. C B D ^ > C A D ^
D. C B D ^ = 2. C A D ^
Bài 1 Cho góc xoy nhọn và tia phân giác om của nó . Trên tia ox , oy lấy điểm a ,b sao cho oa=ob A, cm A đối xứng với B qua om B, gọi c,d là 2 điểm trên ox,oy sao cho oc-Bc