Chương II : Tam giác

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
shiro

cho góc nhọn xOy. trên tia Ox lấy điểm A và B sao cho OA=OB. Trên tia Oy lấy điểm C và D sao cho OC=OD=OA. Chứng minh rằng

a) Δ OAD = Δ OCB

b) Δ KAB=Δ KCD ( K là giao điểm AD và BC)

c) OK là tia phân giác góc xOy

Đức Bùi
24 tháng 12 2022 lúc 20:32

Cho góc nhọn xOy. Trên tia Ox lấy điểm A và C sao cho OA < OC, trên tia Oy lấy điểm B và D sao cho OA = OB ; OC = OD. Gọi E là giao điểm của AD và BC. a) Chứng minh: AD = BC. b) Chứng minh: ∆EAC = ∆EBD. c) Chứng minh: OE là tia phân giác của góc xOy. (ảnh 1)

a) Chứng minh: AD = BC.

Xét ∆OAD và ∆OBC có:

OA = OB (gt);

ˆAODAOD^ chung;

OD = OC (gt)

Do đó ∆OAD = ∆OBC (c.g.c)

Suy ra AD = BC (hai cạnh tương ứng)

b) Chứng minh: ∆EAC = ∆EBD.

Vì ∆OAD = ∆OBC (câu a)

Nên ˆA2=ˆB2A^2=B^2 (hai góc tương ứng)

Mà ˆA1+ˆA2=180oA^1+A^2=180oˆB1+ˆB2=180oB^1+B^2=180o (kề bù)

Do đó ˆA1=ˆB1A^1=B^1.

Mặt khác, OA = OB, OC = OD

Suy ra OC – OA = OD – OB

Do đó AC = BD

Xét ∆EAC và ∆EBD có:

ˆA1=ˆB1A^1=B^1 (cmt);

AC = BD (cmt);

ˆOCB=ˆODAOCB^=ODA^ (vì ∆OAD = ∆OBC)

Do đó ∆EAC = ∆EBD (g.c.g).

c) Chứng minh: OE là tia phân giác của góc xOy.

Vì ∆EAC = ∆EBD (câu b)

Nên AE = BE (hai cạnh tương ứng).

Xét ∆OAE và ∆OBE có:

OA = OB (gt);

Cạnh OE chung;

AE = BE (cmt)

Do đó ∆OAE và ∆OBE (c.c.c)

Suy ra ˆAOE=ˆBOEAOE^=BOE^ (hai góc tương ứng)

Hay OE là phân giác của góc xOy.


Các câu hỏi tương tự
Magales
Xem chi tiết
Vân Anh Lê
Xem chi tiết
Nguyễn Hoàng
Xem chi tiết
Hà Linh
Xem chi tiết
Anh Lan Nguyen
Xem chi tiết
Bùi Kim Ngân
Xem chi tiết
My Nguyễn
Xem chi tiết
Bùi Kim Ngân
Xem chi tiết
bùi khánh toàn
Xem chi tiết