cho tam giác abc vuông tại a.kẻ đường cao ah ; m là trung điểm bc và n là trung điểm ab.đường thẳng mn cắt tia ah tại d.Kẻ he vuông góc ac và hf vuông góc ab.CMR a) am vuông góc ef b)ef // db
Cho tam giác ABC vuông tại A.Kẻ đường cao AH (H thuộc BC),phân giác AD (D thuộc BC). Biết BD= 7cm; CD=10 cm.Tính độ dài HD.
Cho tam giác ABC vuông tại A.Kẻ đường cao AH,biết AB=4cm,HC=6cm.Tính \(\widehat{B},\widehat{C}\) và AC
Cho tam giác ABC vuông ở A.Kẻ ba đường cao AH,BK,CM
a) CM: AB.AC=AH.BC?
b) CM: AC2=HC.BC
c) AH2=HB.HC
a) Xét ΔABH và ΔABC ta có:
\(\widehat{AHB}=\widehat{BAC}\)
\(\widehat{B}\) chung
→ΔABH ∼ ΔABC(g-g)(1)
\(\rightarrow\dfrac{AB}{AH}=\dfrac{BC}{AC}\)
\(\Rightarrow AB.AC=AH.BC\)
b) Vì ΔABH ∼ ΔABC (cmt)
\(\rightarrow\dfrac{AC}{HC}=\dfrac{BC}{AC}\)
\(\rightarrow AC.AC=HC.BC\)
\(\Rightarrow AC^2=HC.BC\)
c) Xét ΔAHC và ΔABC ta có:
\(\widehat{C}\) chung
\(\widehat{AHC}=\widehat{BAC}=90^0\)
→ΔAHC ∼ ΔABC(g-g)(2)
Từ (1) và (2)→ΔABH ∼ ΔAHC
\(\rightarrow\dfrac{AH}{HB}=\dfrac{HC}{AH}\)
\(\rightarrow AH.AH=HB.HC\)
\(\Rightarrow AH^2=HB.HC\)
Cho tam giác ABC vuông tại A.Kẻ đường cao AH ( H thuộc BC) . Trên cạnh AC lấy điểm M sao cho AM=AH.Trên BC lấy điểm N sao cho BN=Ba.CMR:
a) MN vuông góc với AC
b) BC+AH>AB +AC
Cho tam giác ABC vuông tại A.Kẻ đường cao AH
A) Biết BC=20cm, HA/HC=3/4.tính AH,HC,BC
B)C/m AH3=BC.BD,CE(DE lần lượt là hình chiếu của H trên AB,AC)
bài 1: tam giác ABC vuông tại A đường cao AB/AC =3/4; BC= 10. tính AH, BH
bài 2: cho tam giác ABC vuông tại A đường cao AH=33,6 biết AB/AC =27/4 tính các cạnh của tam giác ABC
bài 3: cho tam giác ABC vuông tại A đường cao AH tính đường cao AH,AB,AC nếu biết BH=36; CH=64
1
\(\dfrac{AB}{AC}=\dfrac{3}{4}\Rightarrow AB=\dfrac{3}{.4}AC\)
Theo pytago xét tam giác ABC vuông tại A có:
\(\sqrt{AB^2+AC^2}=BC^2\\ \Rightarrow\sqrt{\left(\dfrac{3}{4}AC\right)^2+AC^2}=10\\ \Rightarrow AC=8\\ \Rightarrow AB=\dfrac{3.8}{4}=6\)
Theo hệ thức lượng xét tam giác ABC vuông tại A, đường cao AH có:
\(AB^2=BH.BC\\ \Leftrightarrow BH=\dfrac{AH^2}{BC}=\dfrac{6^2}{10}=3,6\)
2
\(\dfrac{AB}{AC}=\dfrac{27}{4}\Rightarrow AB=\dfrac{27}{4}AC\)
\(BC=\sqrt{AB^2+AC^2}=\sqrt{\left(\dfrac{27}{4}AC\right)^2+AC^2}=\dfrac{\sqrt{745}AC}{4}\) ( Theo pytago trong tam giác ABC vuông tại A)
Theo hệ thức lượng trong tam giác ABC vuông tại A, đường cao AH có:
\(AH.BC=AB.AC\\ \Leftrightarrow33,6.\dfrac{\sqrt{745}}{4}AC=\dfrac{27}{4}AC.AC\\ \Rightarrow AC=\dfrac{56\sqrt{745}}{45}\)
\(\Rightarrow\left\{{}\begin{matrix}AB=\dfrac{27}{4}.\dfrac{56\sqrt{745}}{45}=\dfrac{42\sqrt{745}}{5}\\BC=\dfrac{\sqrt{745}}{4}.\dfrac{56\sqrt{745}}{45}=\dfrac{2086}{9}\end{matrix}\right.\)
Vậy \(\left\{{}\begin{matrix}AC\approx33,97\\AB\approx229,28\\BC\approx231,78\end{matrix}\right.\)
3
`BC=HB+HC=36+64=100`
Theo hệ thức lượng có (trong tam giác ABC vuông tại A đường cao AH):
\(AH^2=HB.HC\\ \Rightarrow AH=\sqrt{36.64}=48\)
\(AB=\sqrt{HB.BC}=\sqrt{36.100}=60\\ AC=\sqrt{HC.BC}=\sqrt{64.100}=80\)
giúp mình bài này với !!
cho tam giác ABC vuông tại A.Kẻ đường cao AH .Lấy điểm D thuộc đoạn AC và điểm E thuộc AH .Kéo dài về phía H sao cho AD/AC=HE/HA=1/3.CMR: BE vuông góc với ED
Cho tam giác ABC cân tại A.Kẻ đường cao AH của tam giác ABC.Gọi I là trung điểm của đoạn thẳng BH.Lấy điểm M thuộc tia đối của tia IA sao cho IM=IA
a)Chứng minh rằng BM=AH và AB+AH>AM
b)Tia MH cắt AC tại E.BE cắt AH tại G.Chứng minh rằng tam giác EHC là tam giác cân và BG=2GE
Ai cứu mình bài này với mình đang cần
a: Xét tứ giác AHMB có
I là trung điểm chung của MA và HB
=>AHMB là hình bình hành
=>BM=AH
AB+AH=AB+BM>AM
b: Xét ΔABC có
H là trung điểm của BC
HE//AB
=>E là trung điểm của AC
ΔAHC vuông tại H
mà HE là trung tuyến
nên EH=EC
=>ΔEHC cân tại E
cho tam giác ABC cân tại A.kẻ AH vuông góc BC tại H.kẻ HM vuông góc AB và HN vuông góc AC chứng minh
a)tam giác BMH =tam giác CNH
b)tam giác AMN cân
c)AH vuông góc MN
giúp mik vs please 🥺🥺🥺
a: Xét ΔBMH vuông tại M và ΔCNH vuông tại N có
BH=CH
\(\widehat{B}=\widehat{C}\)
Do đó: ΔBMH=ΔCNH
b: Ta có: ΔBMH=ΔCNH
nên BM=CN
=>AM=AN
hay ΔAMN cân tại A
c: Xét ΔABC có AM/AB=AN/AC
nên MN//BC
mà AH⊥BC
nên AH⊥MN