tim so nguyen n sao cho 2n + 1/n - 5 la so nguyen
Tim cac so nguyen n sao cho:
A=\(\dfrac{n-3}{n+1}\)la so nguyen C=\(\dfrac{2n+3}{n-1}\)la so nguyen
B=\(\dfrac{2n-3}{n+2}\)la so nguyen D=\(\dfrac{-n+5}{n+2}\)la so nguyen
a: Để A là số nguyên thì \(n+1-4⋮n+1\)
\(\Leftrightarrow n+1\in\left\{1;-1;2;-2;4;-4\right\}\)
hay \(n\in\left\{0;-2;1;-3;3;-5\right\}\)
b: Để B là số nguyên thì \(2n+4-7⋮n+2\)
\(\Leftrightarrow n+2\in\left\{1;-1;7;-7\right\}\)
hay \(n\in\left\{-1;-3;5;-9\right\}\)
c: Để C là số nguyên thì \(2n-2+5⋮n-1\)
\(\Leftrightarrow n-1\in\left\{1;-1;5;-5\right\}\)
hay \(n\in\left\{2;0;6;-4\right\}\)
d: Để D là số nguyên thì \(-n-2+7⋮n+2\)
\(\Leftrightarrow n+2\in\left\{1;-1;7;-7\right\}\)
hay \(n\in\left\{-1;-3;5;-9\right\}\)
tim cac so nguyen n sao cho P=2n -1 / n-1 la so nguyen
\(P=\frac{2n-1}{n-1}=\frac{2\left(n-1\right)+1}{n-1}\)
\(=\frac{2\left(n-1\right)}{n-1}+\frac{1}{n-1}\)
\(=2+\frac{1}{n-1}\)
Do đó, (n-1)\(\in\)Ư(1)
\(\Rightarrow\)n- 1= -1 và n - 1=1
\(\Rightarrow\)n=0 và n=2
Tim so nguyen n sao sao cho
A=(n^3 + 3n^2 + 2n + 5) : (n+2) la so nguyen
Để A là số nguyên thì (n3+3n2+2n+5) chia hết cho (n+2)
(n3+2n2+n2+2n+5) chia hết cho (n+2)
[n2(n+2)+n(n+2)+5] chia hết cho (n+2)
[(n2+n)(n+2)+5] chia hết cho (n+2)
=>5 chia hết cho n+2 hay n+2EƯ(5)={1;-1;5;-5}
=>nE{-1;-3;2;-7}
Vậy để A nguyên thì nE{-1;-3;2;-7}
tim tat ca cac so nguyen n sao cho ( 2n + 3 )/ 7 la so nguyen
Để \(\dfrac{2n+3}{7}\) là số nguyên thì:
(2n + 3) \(⋮\) 7
\(\Rightarrow\) (2n + 3 - 7) \(⋮\) 7
\(\Rightarrow\) (2n - 4) \(⋮\) 7
\(\Rightarrow\) [2(n - 2)] \(⋮\) 7
Mà (2,7) = 1
\(\Rightarrow\) (n - 2) \(⋮\) 7
\(\Rightarrow\) n - 2 = 7k (k \(\in\) Z)
n = 7k + 2 (k \(\in\) Z)
Vậy với n = 7k + 2 (k \(\in\) Z) thì \(\dfrac{2n+3}{7}\) là số nguyên.
Chúc bn học tốt!
Tik mik nha !
Cac dap an:
A. 4k + 3
B. 7k + 5
C. 7k
Vs k thuoc Z nhe!
Cac bn giup mk vs, mk dang can gap dap an lan loi giai nhe!
D. 7k +2
tim tat ca cac so nguyen n sao cho 2n+3/7 la so nguyen
giupppppppppp
tim so nguyen duong n nho nhat sao cho n/2 la binh phuong cua mot so nguyen va n/5 la lap phuong cua 1 so nguyen
1,Tim cac so nguyen x va y sao cho (x-2)(y-1) =5.
2,Tim so nguyen n sao cho n+5 chia het cho 2n-1
n + 5 chia hết cho 2n - 1
=> 2 ( n + 5 ) chia hết cho 2n - 1
=> 2n + 10 chia hết cho 2n - 1
2n - 1 + 11 chia hết cho 2n - 1
Mà 2n - 1 chia hết cho 2n - 1
=> 11 chia hết cho 2n - 1
=> 2n - 1 thuộc Ư( 11 )
=> 2n - 1 thuộc { - 1 ; 1 ; 11 ; - 11 }
=> 2n thuộc { 0 ; 2 ; 12 ; - 10 }
=> n thuộc { 0 ; 1 ; 6 ; - 5 }
\(\left(x-2\right)\left(y-1\right)=5\)
\(\Rightarrow\left(x-2\right);\left(y-1\right)\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Xét các trường hợp :
\(\hept{\begin{cases}x-2=5\\y-1=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=7\\y=2\end{cases}}}\)\(\hept{\begin{cases}x-2=-5\\y-1=-1\end{cases}\Leftrightarrow\hept{\begin{cases}x=-3\\y=0\end{cases}}}\)\(\hept{\begin{cases}x-2=1\\y-1=5\end{cases}\Leftrightarrow\hept{\begin{cases}x=3\\y=6\end{cases}}}\)\(\hept{\begin{cases}x-2=-1\\y-1=-5\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=-4\end{cases}}}\)bai 1
a, chung to rang 2n+5/n+3, ( n thuoc N ) la phan so toi gian
b, tim gia tri nguyen cua n de B= 2n+5/n+3 co gia tri la so nguyen
bai 2
tim so tu nhien nho nhat sao khi chia cho 3 du 1 cho 4 du 2 cho 5 du 3 cho 6 du 4 va chia het cho 11
\(a;\frac{2n+5}{n+3}\)
Gọi \(d\inƯC\left(2n+5;n+3\right)\Rightarrow3n+5⋮d;n+3⋮d\)
\(\Rightarrow2n+5⋮d\)và \(2\left(n+3\right)⋮d\)
\(\Rightarrow\left[\left(2n+6\right)-\left(2n+5\right)\right]⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\)
Vậy \(\frac{2n+5}{n+3}\)là phân số tối giản
\(B=\frac{2n+5}{n+3}=\frac{2\left(n+3\right)+5-6}{n+3}=\frac{2\left(n+3\right)-1}{n+3}=2-\frac{1}{n+3}\)
Với \(B\in Z\)để n là số nguyên
\(\Rightarrow1⋮n+3\Rightarrow n+3\inƯ\left(1\right)=\left\{\pm1\right\}\)
\(\Rightarrow n\in\left\{-2;-4\right\}\)
Vậy.....................
a, \(\frac{2n+5}{n+3}\)Đặt \(2n+5;n+3=d\left(d\inℕ^∗\right)\)
\(2n+5⋮d\) ; \(n+3⋮d\Rightarrow2n+6\)
Suy ra : \(2n+5-2n-6⋮d\Rightarrow-1⋮d\Rightarrow d=1\)
Vậy tta có đpcm
b, \(B=\frac{2n+5}{n+3}=\frac{2\left(n+3\right)-1}{n+3}=\frac{-1}{n+3}=\frac{1}{-n-3}\)
hay \(-n-3\inƯ\left\{1\right\}=\left\{\pm1\right\}\)
-n - 3 | 1 | -1 |
n | -4 | -2 |
tim so nguyen n de phan so 4n+5/2n-1 co gia tri la mot
so nguyen
4n+5/2n-1 nguyên khi
4n+5 \(⋮\)2n-1
hay 2(2n-1)+9 \(⋮\)2n-1
=>9 \(⋮\)2n-1
=>2n-1 thuộc Ư(9) thuộc 1,-1,3,-3,9,-9
ta có
2n-1 1 -1 3 -3 9 -9
2n 2 0 4 -2 10 -8
n 1 0 2 -1 5 -4