Những câu hỏi liên quan
nguyenquocngoc
Xem chi tiết
Nguyễn Thảo Linh
Xem chi tiết
123456
17 tháng 12 2015 lúc 22:03

Tp là số nguyên tố lớn hơn 3 nên p = 2k + 1 hoặc p = 2k + 2

- Nếu p = 2k + 1 => p + 2 = 2k + 3,là số nguyên tố nếu p không là bội của 3. Do đó p + 1 = 2k + 2 chia hết cho 6.

- Nếu p = 2k + 2 => p + 2 = 3k + 4 là hợp số, loại.

 => đpcm

  tick đúng cho tớ với !

Bình luận (0)
Phạm Thế Mạnh
17 tháng 12 2015 lúc 22:07

vì p là số nguyên tố lớn hơn 3 nên p có dạng 3k+1 hoặc 3k+2 và p lẻ
Nếu p có dạng p=3k+1 => p+2=3(k+1) là hợp số -> Loại
vậy p có dạng 3k+2
=> p+1=3(k+1) chia hết cho 3
vì p lẻ nên p+1 chẵn => p+1 chia hết cho 2
=> p chia hết cho 6

Bình luận (0)
01.Ngô Hà An lớp 6a6
Xem chi tiết
ng.nkat ank
25 tháng 11 2021 lúc 10:12

5

Bình luận (0)
qlamm
25 tháng 11 2021 lúc 10:13

5

Bình luận (0)
Nguyễn Thanh Tâm
25 tháng 11 2021 lúc 10:14

5

Bình luận (0)
Tên gì cho ngầu
Xem chi tiết
Tran Le Khanh Linh
5 tháng 3 2020 lúc 19:58

Cách 1:

p là số nguyên tố, p>3 => p không chia hết cho 3 (1)

p+2 là số nguyên tố, p+2>5>3 => p+2 không chia hết cho 3 (2)

Ta có: p(p+1)(p+2) là tích 3 số tự nhiên liên tiếp => p(p+1)(p+2) chia hết cho 3 (3)

Từ (1),(2),(3) => p+1 chia hết cho 3 (*)

Ta lại có: p là số nguyên tố, p>3 => p lẻ => p+1 chẵn => p+1 chia hết cho 2 (**)

Mà (2;3)=1 (***)

Từ (*),(**),(***) => p+1 chia hết cho 6.

Bình luận (0)
 Khách vãng lai đã xóa
Tran Le Khanh Linh
5 tháng 3 2020 lúc 19:58

Cách 2:

Số nguyên tố lớn hơn 3 sẽ có dạng 3k+1 hay 3k+2  (k thuộc N)

Nếu p=3k+1 thì p+2=3k+1+2=3k+3=3.(k+1) là số nguyên tố. Vì 3.(k+1) chia hết cho 3 nên dạng p=3k+1 không thể có.

Vậy p có dạng 3k+2 (thật vậy, p+2=3k+2+2=3k+4 là 1 số nguyên tố).

=>p+1=3k+2+1=3k+3=3.(k+1) chia hết cho 3.

Mặt khác, p là 1 số nguyên tố lớn hơn 3 cũng như lớn hơn 2 nên p là 1 số nguyên tố lẻ => p+1 là 1 số chẵn => p+1 chia hết cho 2.

Vì p chia hết cho cả 2 và 3 mà ƯCLN(2,3)=1 nên p+1 chia hết cho 6.

Bình luận (0)
 Khách vãng lai đã xóa
Emma
5 tháng 3 2020 lúc 19:58

Số nguyên tố lớn hơn 3 sẽ có dạng 3k+1 hay 3k+2  (k thuộc N)

Nếu p=3k+1 thì p+2=3k+1+2=3k+3=3.(k+1) là số nguyên tố. Vì 3.(k+1) chia hết cho 3 nên dạng p=3k+1 không thể có.

Vậy p có dạng 3k+2 (thật vậy, p+2=3k+2+2=3k+4 là 1 số nguyên tố).

=>p+1=3k+2+1=3k+3=3.(k+1) chia hết cho 3.

Mặt khác, p là 1 số nguyên tố lớn hơn 3 cũng như lớn hơn 2 nên p là 1 số nguyên tố lẻ => p+1 là 1 số chẵn => p+1 chia hết cho 2.

Vì p chia hết cho cả 2 và 3 mà ƯCLN(2,3)=1 nên p+1 chia hết cho 6.

# HOK TỐT #

Bình luận (0)
 Khách vãng lai đã xóa
Nguyễn Văn phong
Xem chi tiết
GoKu Đại Chiến Super Man
Xem chi tiết
Đào Đức Doanh
22 tháng 12 2015 lúc 22:07

3)                         CM:p+1 chia hết cho 2

vì p lớn hơn 3 suy ra p là số lẻ và p+1 là số chẵn.

Vậy p+1 chia hết cho 2

                             CM:p+1 chia hết cho 3

Ta có:p x (p+1) x (p+2) chia hết cho 3(vì tích 3 số liên tiếp luôn chia hết cho 3)

Mà p và p+2 là số nguyên tố nên p và p+2 ko chia hết cho 3

Vậy p+1 chia hết cho 3

Mà ƯCLN(2,3) là 1

Vậy p+1 chia hết cho 2x3 là 6

Vậy p+1 chia hết cho 6 với mọi p lớn hơn 3 và p+2 cùng là số nguyên tố.  

Bình luận (0)
maiphuonganh hoang
Xem chi tiết
Rimuru tempest
2 tháng 1 2021 lúc 21:06

a) 

a,b là ước của 6 thì \(\left\{{}\begin{matrix}a=6n\\b=6m\end{matrix}\right.\left(n,m\in N\right)\)

\(a.b=360\Leftrightarrow6n.6m=360\Leftrightarrow n.m=10=2.5\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}n=2\\m=5\end{matrix}\right.\\\left\{{}\begin{matrix}n=5\\m=2\end{matrix}\right.\end{matrix}\right.\)   \(\Leftrightarrow\left[{}\begin{matrix}n=2\Rightarrow a=12\\n=5\Rightarrow a=30\end{matrix}\right.\)

Bình luận (0)
Lê Trọng Quý
Xem chi tiết
bảo lâm
14 tháng 9 2023 lúc 20:45

mình chỉ biết bài 4 thôi
Bài 4: Vì tổng bằng 1012 nên trong 3 số nguyên tố đó thì phải có 1 số nguyên tố là số chẵn. Nên số chẵn đó là 2 đồng thời là số nhỏ nhất. Vậy số 2 là số nguyên tố nhỏ nhất trong 3 số nguyên tố đó

 

Bình luận (0)
Messia
Xem chi tiết
TheRedSuns
9 tháng 6 2017 lúc 8:53

p=5

p = 11

p = 17

Chia hết hết cho 6 khi cộng 1

Bình luận (0)
Đức Phạm
9 tháng 6 2017 lúc 8:55

p là số nguyên tố lớn hơn 3 nên p là số lẻ , do đó p + 1 \(⋮\)2 (1)

p là số nguyên tố lớn hơn 3 nên p có dạng p = 3k + 1 hoặc p - 3k + 2 (k \(\in N\))

Nếu p = 3k + 1 thì p + 2 = 3k + 3 \(⋮\)3 và p + 2 > 3 nên p + 2 là hợp số . Vậy p = 3k + 2 , khi đó p + 1 = 3k + 3 \(⋮\)3 (2)

Từ (1) và (2) => p + 1 \(⋮\)2.3 hay p + 1 \(⋮\)

Bình luận (0)
Nguyễn Thị Thu Huyền
9 tháng 6 2017 lúc 8:55

đây là chứng minh chứ ko phải là tìm ra kết quả

Bình luận (0)